Kurukshetra University, Kurukshetra (Established by the State Legislature Act XII of 1956) ('A+' Grade, NAAC Accredited)

Scheme of Examinations & Syllabus of M.Tech. Applied Geology (5 Year Integrated Course) I to X semester

Under

Choice Based Credit System (CBCS) Learning Outcomes-based Curriculum Framework (LOCF) w.e.f. Session 2020-21 in phased manner

OUTCOME BASED SYLLABUS

M.Tech. APPLIED GEOLOGY COURSE DURATION OF COURSE - 5 YEARS

VISION

To be globally acknowledged as a distinguished center of academic excellence.

MISSION

To prepare a class of proficient scholars and professionals with ingrained human values and commitment to expand the frontiers of knowledge for the advancement of society.

DEPARTMENT VISION AND MISSION

VISION

To be acknowledged as a distinguished centre for Geoscience education.

MISSION

M1:To provide quality education to aspiring young minds for improving their skills, inculcating values, creating leadership qualities and enhancing research with innovative methods.

M2:To produce young geoscientists capable of being utilized in the areas of new technological design, environment, ethics, and sustainable technologies.

M3:To develop Teaching-Learning methods which can produce socially committed professional human beings who can contribute effectively in Nation building and represent the Country Internationally.

Mapping of University Vision and Mission to Department Vision and Mission

University Vision and Mission	Department Vision and Mission
To be globally acknowledged as a distinguished center of academic excellence.	Yes
To prepare a class of proficient scholars and professionals with ingrained human values and commitment to expand the frontiers of knowledge for the advancement of society.	Yes

Programme Outcomes (POs) with Post Graduate Attributes

Programme outcomes are attributes of the post graduates from the programme that are indicative of the post graduates' ability and competence to work after being a qualified Geologist upon completion of post graduation. Programme outcomes are statements that describe what students are expected to know or do by the time of post graduation, they must relate to knowledge and skills that the students acquire from the programme. The

achievement of all outcomes indicates that the student is well prepared to achieve the programme educational objectives down the road. The department of geology has the following eleven PO's. The course syllabi and the overall curriculum have been designed to achieve these outcomes:

Programme OUTCOMES (POs):

Programme Outcomes (POs) for Post Graduate programmes (CBCS) in the Faculty of Sciences, Kurukshetra University, Kurukshetra

PO1	Knowledge	Capable of demonstrating comprehensive disciplinary knowledge
		gained during course of study
PO2	Research	Capability to ask relevant/appropriate questions for identifying,
	Aptitude	formulating and analyzing the research problems and to draw
	_	conclusion from the analysis
PO3	Communication	Ability to communicate effectively on general and scientific
		topics with the scientific community and with society at large
PO4	Problem Solving	Capability of applying knowledge to solve scientific and other
	_	problems
PO5	Individual and	Capable to learn and work effectively as an individual, and as a
	Team Work	member Or leader in diverse teams, in multidisciplinary settings.
PO6	Investigation of	Ability of critical thinking, analytical reasoning and research
	Problems	based knowledge including design of experiments, analysis and
		interpretation of data to provide conclusions
PO7	Modern Tool	Ability to use and learn techniques, skills and modern tools for
	usage	scientific practices
PO8	Science and	Ability to apply reasoning to assess the different issues related to
	Society	Society and the consequent responsibilities relevant to the
		professional scientific practices
PO9	Life-Long	Aptitude to apply knowledge and skills that are necessary for
	Learning	participating in learning activities throughout life
PO10	Ethics	Capability to identity and apply ethical issues related to one's
		work, avoid unethical behavior such as fabrication of data,
		committing plagiarism and unbiased truthful actions in all aspects
		of work
PO11	Project	Ability to demonstrate knowledge and understanding of the
	Management	scientific principles and apply these to manage projects

Programme Specific Outcomes (PSO's):

PSO1: Basic understanding of fundamental concepts of geology and applying it on the various natural processes occurring on and inside the earth as a whole system.

PSO2: Clearly formulate and solve real life challenges with respect to human environment interactions.

PSO3: Applications of fundamental principles of geology in finding out various minerals and other natural resources for the betterment of human society.

PSO4: Acquisition of skills to effectively communicate the knowledge of geology to the society for safeguarding the physical environment.

Scheme of examinations & Syllabus of M.Tech Applied Geology (5 Year integrated course) Under CBCS-LOCF Pattern Semester - I to II w.e.f 2020-21 in phased manner

Course Code and Definition

for

First Year Scheme

Course Code	Definitions
BS	Basic Science
ES	Engineering Science
HM	Humanities and Social Sciences
	including Management

S.No	Course	Subject	L:T:P	Hours/	Credits	Examinat	ion Schedu	ile (Marks)		Duration
	No./ Code			Week		Major Test	Minor Test	Practical	Total	of exam (Hours)
1A	BS-111	Applied Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105	Programming for Problem Solving	3:0:0	3	3	75	25	0	100	3
2B	HM-101	English	2:0:0	2	2	75	25	0	100	3
3	BS-131	Applied Mathematics-I	3:1:0	4	4	75	25	0	100	3
4A	ES-109	Engineering Graphics & Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111L	Manufacturing Processes Workshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101	Basic Electrical Engineering	4:1:0	5	5	75	25	0	100	3
6A	BS-113L	Applied Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103L	Chemistry Lab	0:0:3	3	1.5		20	30	50	3
7A	ES-107L	Programming for Problem Solving Lab	0:0:2	2	1		20	30	50	3
7B	ES-103L	Basic Electrical Engineering Lab	0:0:2	2	1		20	30	50	3
8A	ES-113L	Engineering Graphics & Design Practice	0:0:3	3	1.5		20	30	50	3
8B	HM-103L	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/25	21.0/	375/	185/	90/	650A/	
			12:3:10		20.0	300	200	150	650B	

Scheme of Examinations of M.Tech. Applied Geology under CBCS-LOCF (I to X Sem.) w.e.f. 2020-21 in phased manner (Semester - I)

Note: A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. Marked B in one particular semester. The Induction Program (Three weeks duration) is a part of scheme of first year in Ist semester for all branches.

SCHEME OF STUDIES/EXAMINATIONS	(Semester -II))
--------------------------------	----------------	---

S.	Course	Subject	L:T:P	Hours/	Credits	Examinati	on Schedule	e (Marks)		Duration
No.	No./ Code			Week		Major Test	Minor Test	Practical	Total	of exam (Hours)
1A	BS-111	Applied Physics	3:1:0	4	4	75	25	0	100	3
1B	BS-101	Chemistry	3:1:0	4	4	75	25	0	100	3
2A	ES-105	Programming for Problem Solving	3:0:0	3	3	75	25	0	100	3
2B	HM-101	English	2:0:0	2	2	75	25	0	100	3
3	BS-132	Applied Mathematics-II	3:1:0	4	4	75	25	0	100	3
4A	ES-109	Engineering Graphics & Design	1:2:0	3	3	75	25	0	100	3
4B	ES-111L	Manufacturing Processes Workshop	0:0:3	3	1.5	-	40	60	100	3
5A	BS-141	Biology	2:1:0	3	3	75	25	0	100	3
5B	ES-101	Basic Electrical Engineering	4:1:0	5	5	75	25	0	100	3
6A	BS-113L	Applied Physics Lab	0:0:3	3	1.5		20	30	50	3
6B	BS-103L	Chemistry Lab	0:0:3	3	1.5		20	30	50	3
7A	ES-107L	Programming for Problem Solving Lab	0:0:2	2	1		20	30	50	3
7B	ES-103L	Basic Electrical Engineering Lab	0:0:2	2	1		20	30	50	3
8A	ES-113L	Engineering Graphics & Design Practice	0:0:3	3	1.5		20	30	50	3
8B	HM-103L	Language Lab	0:0:2	2	1		20	30	50	3
		Total	12:5:8/	25/	21.0/	375/	185/200	90/150	650A/	
			12:3:10	25	20.0	300			650B	

Note: (1) A branch will study either the subjects corresponding to Sr. No. Marked A or corresponding to Sr. No. Marked B in one particular semester.

(2) All students have to undertake the industrial training for 4 to 6 weeks after 2nd semester which will be evaluated in 3rd semester.

BS-111		Applied Physics								
L	Т	Р	Credit	Major	Mino	Total	Time			
				1621	Test					
3	3 1 - 4 75 25 100 3h						3h			
Purpos	To introduce the basics of physics to the students for applications in the									
е	Engineering	g field.								
	Cou	rse Outc	omes							
CO 1	Introduce the applications	ne funda s.	mentals o	f interferen	ce and dif	ffraction a	ind their			
CO 2	To make the students aware of the importance of polarization and Laser in technology.									
CO 3	Applications of optical fiber and ultrasonics in various fields.									
CO 4	Introduce the nuclear radiations and its biological effects.									

Unit - I

Interference: Principle of Superposition, Conditions for interference, Division of wave-front: Fresnel's Biprism and Applications, Division of amplitude: Wedge-shaped film, Newton's rings, Michelson Interferometer and Applications.

Diffraction: Types of diffraction, Fraunhofer diffraction at a single slit, Plane transmission diffraction grating: theory, secondary maxima and minima, width of principal maxima, absent spectra, overlapping of spectral lines, determination of wavelength; Dispersive power and resolving power of diffraction grating.

Unit – II

Polarization: Polarization of transverse waves, Plane of polarization, Polarization by reflection, Double refraction, Nicol Prism, Quarter and half wave plate, Specific Rotation, Laurent 's half shade polarimeter, Biquartzpolarimeter.

Laser: Introduction, Stimulated Absorption, Spontaneous and Stimulated Emission; Einstein's Coefficients and its derivation, Population Inversion, Direct and Indirect pumping, Pumping schemes, Main components of Laser, He-Ne Laser, Semiconductor Laser, Characteristics of Laser, Applications of Laser.

Unit – III

Optical Fiber: Introduction, Principle of propagation of light waves in optical fibers: total internal reflection, acceptance angle, numerical aperture, V- number; Modes of propagation, Types of optical fibers: single mode fiber, multimode fibers; Fiber optics communication system, Advantages of optical fiber communication, Applications of optical fibers.

Ultrasonics: Ultrasonic waves, Properties of ultrasonic waves, Production of ultrasonic waves: Magnetostriction and Piezoelectric methods, Detection of ultrasonic waves, Measurement of velocity of ultrasonic waves, Applications of ultrasonic waves.

Unit – IV

Nuclear radiations and its Biological Effects: Classification of nuclear radiations, Interaction of charged particle (light and heavy) and gamma radiations with matter (basic concepts), Dosimetric units, Relative Biological Effectiveness (RBE), Typical doses from commons sources in the environment, Biological Effects, Maximum Permissible Dose, (MPD), Shielding, Radiation safety in the nuclear radiation laboratory.

Suggested Books:

- 1. Applied Physics for Engineers, Wiley India Pvt. Ltd.
- 2. Concepts of Modern Physics (5th edition), Tata McGraw-Hill Publishing Company Limited.
- 3. A Textbook of Optics, S. Chand & Company Ltd.
- 4. Techniques for Nuclear and Particle Physics Experiments: A How-to Approach, Springer-Verlag.
- 5. Introduction to Nuclear and Particle Physics, PHI Learning Private Limited.
- 6. Biomaterials: The intersection of Biology and Materials Science, Pearson, New Delhi.

Note: The paper setter will set the paper as per the question paper templates provide.

BS-113I	-	Applied Physics Lab									
L	Т	Р	Credit	Practical	Minor Test	Total	Time				
		3	1.5	30	20	50	3h				
Purpose	Purpose Give the knowledge of basic practicals of Physics in Engineering.										
	(Course Out	comes								
CO1	To make	e the stude	nts familiar wit	h the experime	nts related	with optic	s.				
CO2	To give the knowledge of handling of the experiments related with resistance using different methods.										

Note: Students will be required to perform at least 10 experiments out of the following list.

1.	To verify Newton's formula and hence to find the focal length of the given convex lens.
2.	To find the frequency of A.C. mains by using a Sonometer and horseshoe magnet.
3.	To find the resistance of a galvanometer by post office box.
4.	To find low resistance by Carrey-Foster bridge.
5.	To find the value of high resistance by substitution method.
6.	To compare the capacitances of two capacitors by De-Sauty's bridge and hence to find the
dielectric co	nstant of a medium.
7.	To convert a galvanometer into an ammeter of desired range and verify the same.
8.	To find the wavelength of monochromatic light by Newton's ring experiment.
9.	To find the wavelength of sodium light by Michelson's interferometer.
10.	To find the resolving power of a telescope.
11.	To find the wavelength of sodium light using Fresnel bi-prism.
12.	To find the wavelength of various colours of white light with the help of plane transmission diffraction
grating.	
13.	To find the specific rotation of sugar solution by using a Polarimeter.

Suggested Books:

- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, Pragati Prakashan.
- 1. C.L.Arora, B. Sc. Practical Physics, S. Chand.
- 2. B.L. Worshnop and H, T, Flint, Advanced Practical Physics, KPH.
- 3. S.L. Gupta & V. Kumar, Practical Physics, PragatiPrakashan.

BS- 101		Chemistry										
L	Т	Р	Credit	Major	Minor	Total	Time					
				Test	Test							
3	1	-	4	75	25	100	3h					
Purpose	To far	niliarize the s	students w	ith basic	and applie	d concep	t in chemistry					
CO1	An ins	sight into the	atomic an	d molecu	lar structu	ire						
CO2	Analy	tical techniq	ues used i	n identific	ation of m	olecules						
CO3	To un	To understand Periodic properties										
CO4	To un	To understand the spatial arrangement of molecules										

UNIT - I

Atomic and molecular structure (10 lectures)

Molecular orbitals of diatomic molecules (N2, O2, CO) Equations for atomic and molecular orbitals. Energy level diagrams of diatomics. Pi-molecular orbitals of butadiene and benzene and aromaticity. Crystal field theory and energy level diagrams of [Co(NH3)6], [Ni(CO)4], [PtCl2(NH3)2] and magnetic properties of metal complexes. Band structure of solids and the role of doping on band structures.

UNIT - II

Spectroscopic techniques and applications (8 lectures)

Principles of spectroscopy and selection rules. Electronic spectroscopy (basic concept). Fluorescence and its applications in medicine. Vibrational and rotational spectroscopy of diatomic molecules. Applications. Basic concepts of Nuclear magnetic resonance and magnetic resonance imaging, Diffraction and scattering.

UNIT - III

Use of free energy in chemical equilibria (4 lectures)

Thermodynamic functions: energy, entropy and free energy. Estimations of entropy and free energies. Free energy and emf. Cell potentials, the Nernst equation and applications.

Periodic properties (4 Lectures)

Effective nuclear charge, penetration of orbitals, variations of s, p, d and f orbital energies of atoms in the periodic table, electronic configurations, atomic and ionic sizes, ionization energies, electron affinity and electronegativity, polarizability, oxidation states, coordination numbers and geometries, hard soft acids and bases, molecular geometries (H2O, NH3, PC15, SF6, CC14, Pt(NH3)2C12

UNIT - IV

Stereochemistry (6 lectures)

Representations of 3 dimensional structures, structural isomers and stereoisomers, configurations and symmetry and chirality, enantiomers, diastereomers, optical activity, absolute configurations and conformational analysis. **Organic reactions and synthesis of a drug molecule (4 lectures)**

Introduction to reactions involving substitution, addition, elimination, oxidation, reduction, cyclization and ring openings. Synthesis of a commonly used drug molecule(paracetamol and Aspirin)

Suggested Books:

- 1) University chemistry, by B. M. Mahan, Pearson Education
- 2) Chemistry: Principles and Applications, byM. J. SienkoandR. A. Plane
- 3) Fundamentals of Molecular Spectroscopy, by C. N. Banwell
- 4) Engineering Chemistry (NPTEL Web-book), by B. L. Tembe, Kamaluddin and M. S.Krishnan
- 5) Physical Chemistry, by P. W. Atkins

Note: The paper setter will set the paper as per the question paper templates provided

BS- 103L	Chemistry Lab							
L	Т	T P Credit Practica Minor Total Tim						
-	-	3	1.5	30	20	50	3h	

LIST OF EXPERIMENTS

- To Determine the surface tension of a given liquid 1.
- 2. To determine the relative viscosity of a given liquid using Ostwald's viscometer
- 3. To identify the number of components present in a given organic mixture by thin layer chromatography
- To determine the alkalinity of a given water sample 4.
- 5. Determination of the strength of a given HCl solution by titrating it with standard NaOH solution using conductometer
- 6. Synthesis of a drug (paracetamol/Aspirin)
- Determination of chloride content of a given water sample 7.
- To determine the calcium & magnesium or temporary & permanent hardness of a given water 8. sample by EDTA method
- 9. To determine the total iron content present in a given iron ore solution by redox titration
- 10. Determination of the partition coefficient of a substance between two immiscible liquids
- To find out the content of sodium, potassium in a given salt solution by Flame Photometer 11.
- 12. To find out the λ max and concentration of unknown solution by a spectrophotometer
- To find out the flash point and fire point of the given oil sample by Pensky Martin apparatus 13.
- To determine the amount of dissolved oxygen present in a given water sample 14.
- To find out the pour point and cloud point of a lubricating oil 15.
- Determination of the strength of a given HCl solution by titrating it with standard NaOH solution using 16. pH meter

17. Using Redwood Viscometer find out the viscosity of an oil sample

Note: At Least 9 experiments to be performed from the list.

ES-105	Programming for Problem Solving										
L	Т	Ρ	Credit	Major	Minor	Total	Time				
				Test	Test						
3	-	-	3	75	25	100	3h				
Purpose	To familiarize the students with the basics of Computer System and C										
	Programming										
	Course Outcomes										
CO 1	Describ	e the ov	verview of C	Computer S	System and	d Levels of	Programming				
	Langua	ges .		-	-						
CO 2	Learn to	o transla	ate the algo	rithms to p	orograms (in C langua	ge).				
CO 3	Learn description and applications of conditional branching, iteration and										
	recursion.										
CO 4	To use arrays, pointers and structures to formulate algorithms and										
	programs.										

UNIT – I

Overview of Computers: Block diagram and its description, Number systems, Arithmetic of number systems, Computer Hardware: Printers, Keyboard and Mouse, Storage Devices.

Introduction to programming language: Different levels of PL: High Level language, Assembly language, Machine language; Introduction to Compiler, Interpreter, Debugger, Linker, Loader, Assembler.

Problem Analysis: Problem solving techniques, Algorithms and Flowchart representation.

UNIT – II

Overview of C: Elements of C, Data types; Storage classes in C; Operators: Arithmetic, relational, logical,

bitwise, unary, assignment and conditional operators, precedence & associativity of operators.

Input/output: Unformatted & formatted I/O function in C.

Control statements: if statement, switch statement; Repetition: for, while, and do-while loop; break, continue, goto statements.

$\mathbf{UNIT} - \mathbf{III}$

Arrays: Definition, types, initialization, processing an array, String handling.

Functions: Definition, prototype, parameters passing techniques, recursion, built-in functions, passing arrays to functions, returning arrays from functions.

UNIT – IV

Pointers: Declaration, operations on pointers, pointers and arrays, dynamic memory allocation, pointers and functions, pointers and strings.

Structure & Union: Definition, processing, passing structures to functions, use of

union. Data files: Opening and closing a file, I/O operations on files.

Suggested Books:

- 1. Brian W. Kernighan Dennis Ritchie, "C Programming Language" Pearson Education India.
- 2. Subrata Saha, Subhodip Mukherjee: Basic Computation & Programming with 'C'-Cambridge
- University Press. 3. Ajay Mittal, "Programming in C A Practical Approach", Pearson.
- 4.E Balagurusamy :Programming in ANSI C,TMH Education.
- 5. Pradip Dey and Manas Ghose, "Computer Fundamental and Programming in C", Oxford Pub.
- 6.ForouzanBehrouz, "Computer Science: A Structured Programming Approach Using C", Cengage Learning.
- 7. Ashok Kamthane, "Programming in C, 3e", Pearson Education India..
- 8. Yashwant Kanetker, "Let us C", BPB Publications.
- 9.A K Sharma, "Fundamentals of Computers & Programming" DhanpatRai Publications
- 10. Rajaraman V., "Computer Basic and C Programming", Prentice Hall of India Learning.

Note: The paper setter will set the paper as per the question paper templates provided.

ES- 107L	P	Programming for Problem Solving Lab										
L	Т	Ρ	Credit	Practica I	Minor Test	Total	Time					
-	-	2	1	30	20	50	3h					
Purpos	To Introduce students with problem solving using C Programming language											
е												
	Со	urse (Outcomes									
CO 1	To formu	late tl	he algorith	ms for simp	e problem	S						
CO 2	Impleme	ntatio	n of arrays	and functio	ns.							
CO 3	Impleme	ntatio	n of pointe	rs and user	defined da	ta types.						
CO 4	Write ind procedur	Write individual and group reports: present objectives, describe test procedures and results.										

LIST OF PROGRAMS

- 1. Write a program to find the sum of individual digits of a positive integer.
- 2. Write a program to generate the first n terms of the Fibonacci sequence.
- 3. Write a program to generate all the prime numbers between 1 and n, where n is the input value given by the user.
- 4. Write a program to find the roots of a quadratic equation.
- 5. Write a function to generate Pascal's triangle.
- 6. Write a program for addition of Two Matrices
- 7. Write a program for calculating transpose of a matrix.
- 8. Write a program for Matrix multiplication by checking compatibility
- 9. Write programs to find the factorial of a given integer by using both recursive and non-recursive

functions.

- 10. Write a function that uses functions to perform the count of lines, words and characters in a given text.
- 11. Write a program to explores the use of structures, union and other user defined variables
- 12. Write a program to print the element of array using pointers
- 13. Write a program to implement call by reference
- 14. Write a program to print the elements of a structure using pointers
- 15. Write a program to read a string and write it in reverse order
- 16. Write a program to concatenate two strings
- 17. Write a program to check that the input string is a palindrome or not.
- 18. Write a program which copies one file to another.
- 19. Write a program to reverse the first n characters in a file.

Note: At least 10 programs are to be performed & executed from the above list.

HM-101		English										
L	Т	Ρ	Credit	Major Test	Minor Test	Total	Time					
2	-	-	2	75	25	100	3h					
	Οοι	urse Ou	Itcomes	•	·	•						
CO 1	Building u	Building up the vocabulary										
CO 2	Students v	vill acq	uire basic prof	iciency in	English inc	luding writi	ng skills					

UNIT-1

Vocabulary Building

1.1 The concept of Word Formation

- 1.2 Root words from foreign languages and their use in English
- 1.3 Acquaintance with prefixes and suffixes from foreign languages in English to farm derivatives.
- 1.4 Synonyms, antonyms, and standard abbreviations.

Basic Writing Skills

- 2.1 Sentence Structures
- 2.2 Use of phrases and clauses in sentences
- 2.3 Importance of proper punctuation
- 2.4 Creating coherence
- 2.5 Organizing principles of paragraphs in documents
- 2.6 Techniques for writing precisely

UNIT-3

Identifying Common Errors in Writing

- 3.1 Subject-verb agreement
- 3.2 Noun-pronoun agreement
- 3.3 Misplaced modifiers
- 3.4 Articles
- 3.5 Prepositions
- 3.6 Redundancies
- 3.7 Clichés

UNIT-4

Nature and Style of sensible Writing

- 4.1 Describing
- 4.2 Defining
- 4.3 Classifying
- 4.4 Providing examples or evidence
- 4.5 Writing introduction and conclusion

- 4.6 Comprehension
- 4.7 Précis Writing
- 4.8 Essay Writing

Suggested Books:

(i) Practical English Usage. Michael Swan. OUP.1995.

UNIT-2

(ii) Remedial English Grammar. F.T. Wood.

Macmillan.2007 (iii)On Writing Well. William Zinsser. Harper Resource Book. 2001

- (iv) Study Writing. Liz Hamp-Lyons and Ben Heasly. Cambridge University Press. 2006.
- (v) Communication Skills. Sanjay Kumar and PushpLata. Oxford University Press. 2011.
- (vi) Exercises in Spoken English. Parts. I-III. CIEFL, Hyderabad. Oxford University Press

Note: The paper setter will set the paper as per the question paper templates provided.

HM-103L		La	nguage Lab				
L	Т	Р	Credit	Practical	Minor Test	Tota I	Time
-	-	2	1	30	20	50	3h

OBJECTIVES

- 1. Listening Comprehension
- 2. Pronunciation, Intonation, Stress and Rhythm
- Common Everyday Situations: Conversations and Dialogues Communication at Workplace 3.
- 4.
- 5. Interviews
- 6. Formal Presentations

BS-131			APPLIED	MATHEMA	FICS-I						
L	Т	Р	Credit	Major	Minor	Total	Time				
				Test	Test						
3	1	-	4	75	25	100	3 h				
Purpose	rpose The objective of this course is to familiarize the prospective Biotechnology Engine										
	with techniques in Limit, Continuity, Differential & Integral Calculus and Complex										
Numbers. It aims to equip the students with standard concepts and tools at a beginner to											
	intermediate and then at advanced level that will serve them well towards tackling more										
	advanced level of mathematics and										
	applications that they would find useful in their disciplines. More precisely, the										
	objec	ctives are a	under:								
		Course (Outcomes								
CO1	To intro	oduce the i	idea of sets,	relations, func	tions, trigono	metric fun	ctions, inverse				
	trigono	metric fun	ctions, these	concepts are	prerequisite to	o learn the	concepts of				
	differer	ntiation and	d integration	•							
CO 2	To intro	oduce the (Complex nu	nbers which is	s fundamenta	l to solve a	ny kind of quadratic				
	equatio	ns, Limit i	s precondition	on to understa	nd the concep	ot of rate of	change and derivative.				
CO 3	To deve	elop the es	sential tool of	of Continuity a	and Different	iability nee	ded in evaluating higher				
	order d	erivatives	of functions.								
CO 4	To intro	oduce the t	tools of Inde	finite and Defi	inite integrals	of functio	ns in a comprehensive				
	manner	that are u	sed in variou	is techniques c	lealing engine	eering prob	olems.				
T-I					(1)	2 hrs)					

UNIT-I

Sets, Relations, Functions

Sets and its types: Operations on sets, complement of a set, Cartesian Product of sets, relations, functions, types of functions, **Trigonometric functions:** Introduction, Angles, Trigonometric functions, Trigonometric functions: Introduction, Sum and difference of two angles, Trigonometric equations, **Inverse Trigonometric functions:** Introduction, basic concepts and its properties.

UNIT-II

(12 hrs)

Pre-Calculus

Complex Numbers: Introduction, Algebra of Complex Numbers, Modulus and the conjugate of a complex number, quadratic equations, **Limits and Derivatives:** Introduction, Limits, Limits of Trigonometric Functions, Derivatives (single variable). **UNIT-III** (12 hrs)

Differential Calculus

Continuity and Differentiability: Introduction, Continuity, Differentiability, Exponential and Logarithmic functions, Logarithmic differentiation, Derivatives of functions in parametric forms, second order derivatives, **Application of Derivatives (single variable)**: Increasing and decreasing functions, Maxima and Minima.

UNIT-IV

(12 hrs)

Integral Calculus

Integrals: Introduction, Integration as an Inverse process of Differentiation, Method of Integration, Integration by Partial Fractions, Integration by Parts, **Definite Integrals**: Fundamental theorem of Calculus, Evaluation of Definite Integrals by Substitution, properties of Definite Integrals.

Suggested Books:

- 1. G. B. Thomas, R. L. Finney: Calculus and Analytic Geometry, Pearson Education.
- 2. Mathematics Textbook for Class 11th& 12th by NCERT.
- 3. Howard Anton: Calculus, Wiley Publication.
- 4. E. Kreyszig: Advanced Engineering Mathematics, Wiley India.

Note: The paper setter will set the paper as per the question paper templates provided.

Course code	ES-109								
Coursetitle	Eng	Engineering Graphics & Design							
Scheme and Credits	L	Т	Ρ	Credit	Major	Minor	Tot	Tim	
				S	Test	Test	al	е	
	1	2	0	3	75	25	100	3h	

Course Outcomes

Objectiv Projectio	Objective- To expose students to the basics of Engineering Drawing , graphics and Projections.							
CO-1	To learn about construction of various types of curves and scales.							
CO-2	To learn about orthographic projections of points, lines and planes.							
CO-3	To Learn about the sectional views and development of Right regular solids							
CO-4	To Learn about the construction of Isometric Projections and conversion of Isometric views to Orthographic views and vice-versa.							

UNIT - I

IntroductiontoEngineeringDrawing:

Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales – Plain, Diagonal and Vernier Scales;

UNIT - II

Orthographic Projections:

Principles of Orthographic Projections-Conventions-Projections of Points and lines inclined to both planes; Projections of planes inclined to one principalPlane.

Projections of Regular Solids:

Solid with axis inclinedtoboththePlanes;

UNIT - III

Sections and Sectional Viewsof Right Regular Solids:

Sectional views of simple right regular solids like prism, pyramid, Cylinder and Cone. Development of surfaces of Right Regular Solids - Prism, Pyramid, Cylinder and Cone;

UNIT - IV

Isometric Projections:

Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of IsometricViews to Orthographic Views and Vice-versa, Conventions:

Suggested Books:

- 1. Engineering Graphics using AUTOCAD 2000: T. Jeyapoovan, Vikas Publishing House.
- 2. Engineering Drawing: Plane and Solid Geometry: N.D. Bhatt and V.M.Panchal, Charotar Publishing House.
- 3. Engineering Drawing: Amar Pathak, Dreamtech Press, New Delhi.
- 4. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.
- 5. Engineering Graphics and Drafting: P.S. Gill, Millennium Edition, S.K. Katariaand Sons.
- 6. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum.
- 7. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press.
- 8. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999.
- 9. BSI, Technical production documentation (TPD) specification for defining, specifying and graphically reporting products, BS8888, 2002.
- 10. CorrespondingsetofCADSoftwareTheoryandUserManuals.

Note: The paper setter will set the paper as per the question paper templates provided.

Course code	ES-1	ES-113L							
Course title	Engineering Graphics & Design Practice								
Scheme and Credits	L	Т	Ρ	Credi ts	Practic al	Minor Test	Tot al	Time	
	-	-	3	1.5	30	20	50	3h	
Pre-requisites(if any)	-								

Aim: To eng	make student practice on ineering exposure to the visual	graphic s	an d	design softwares and provide				
aspects of	engineering design.							
CO-1	To give an overview of the user interface and toolboxes in a CAD software.							
CO-2	To understand how to customize settind drawing.	To understand how to customize settings of CAD software and produce CAD drawing.						
CO-3	To practice performing various function	ons in CAI) soft	wares.				
CO-4 To Learn about solid modelling and demonstration of a simple team design project.								

Module 1: Overview of Computer Graphics:

Listing the computer technologies that impact on graphical communication, Demonstrating Knowledge of the theory of CAD software [such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus(Button Bars), The Command Line(where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.; Isometric Views of lines, Planes, Simple and compound Solids];

Module2: Customization & CAD Drawing:

Setup of the drawing page and the printer ,including scale settings, Setting up of units and drawing limits ;ISO and ANSI standards for coordinate dimensioning and tolerancing; Orthographic constraints, Snap to objects manually and automatically; Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawing circles;

Module3: Annotations, layering & other functions:

Applying dimensions to objects ,applying annotations to drawings ;Setting up and use of Layers ,layers to create drawings ,Create ,edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen);Printing documents to paper using the print command ;orthographic projection techniques; Drawing sectional views of composite right regular geometric solids and project the true shape of the sectioned surface; Drawing annotation ,Computer-aided design(CAD) software modeling of parts and assemblies .Parametric and non-parametric solid, surface, and wire frame models. Part editing and two-dimensional documentation of models. Planar projection theory, including sketching of perspective, isometric, multiview, auxiliary, and section views. Spatial visualization exercises .Dimensioning guidelines ,tolerancing techniques; dimensioning and scale multi views of dwelling;

Module4: Demonstration of a simple team design project:

Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blueprint form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component manufacture; geometric dimensioning and tolerancing; Use of solid-modeling software for creating associative models at the component and assembly levels; floor plans that include: windows ,doors ,and fixtures such as WC, bath ,sink ,shower ,etc. Applying colour coding according to building drawing practice; Drawing sectional elevation showing foundation to ceiling; Introduction to Building Information Modeling (BIM).

Suggested Books(ES-113L):

Chris McMahon and Jimmie Browne, CAD/CAM – Principle Practice and Manufacturing 1. Management, Addison Wesley England, Second Edition, 2000. Chougule N.K.; CAD/CAM /CAE, Scitech Publications India Pvt. Ltd. 2. Vikram Sharma; Computer Aided Design and Manufacturing, S.K. Kataria and Sons. 3. Rogers, D.F. and Adams, A., Mathematical Elements for Computer Graphics, McGraw Hill Inc, NY, 4. 1989 5. Ibrahim Zeid, CAD/CAM theory and Practice, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 1992. M.P. Groover, Automation, Productions systems and Computer-Integrated Manufacturing by Prentice -6. Hall. 7. A Primer on Computer aided Engineering Drawing-2006, published by VTU, Belgaum. 8. A.Yarwood, Introduction to AutoCAD 2017, Published by CRC Press. 9. O. Ostrowsky, Engineering Drawing with CAD applications, Butterworth Heinemann, 1999. 10. BSI, Technical production documentation (TPD) – specification for defining, specifying and graphically reporting products, BS8888, 2002. (Corresponding set of)CAD Software Theory and User Manuals 11. 12. Ibrahim Zeid, Mastering CAD/CAM, Tata McGraw Hill Publishing Co. Ltd., New Delhi. 13. P. Radhakrishnan, S. Subramanayan and V.Raju, CAD/CAM/CIM, New Age International (P) Ltd., New Delhi. 14. Groover M.P. and Zimmers E. W., CAD/CAM: Computer Aided Design and Manufacturing, Prentice Hall International, New Delhi, 1992. 15. Dr. Sadhu Singh, Computer Aided Design and Manufacturing, Khanna Publishers, New Delhi, Second Edition, 2000.

16. Thomas E.French, Charles J.Vierck, Robert J.Foster, "Engineering drawing and graphic technology", McGraw Hill International Editions.

Course code	ES-111L								
Course title	Manu	Ianufacturing Processes Workshop							
Scheme and Credits	L	т	Ρ	Credit s	Practic al	Minor Test	Total	Time	
	0	0	3	1.5	60	40	100	3h	
Pre- requisites (if any)									

Aim: To make students gain a hands on work experience in a typical manufacturing industry environment.

CO-1	To familiarize with different manufacturing methods in industries and work on
	CNC machines.
CO-2	To learn working in Fitting shop and Electrical and Electronics shops,
CO-3	To practice working on Carpentry and Plastic moulding/glass cutting jobs.
CO-4	To gain hands on practice experience on Metal casting and Welding jobs.

Manufacturing Processes Workshop Contents

- 1. Manufacturing Methods-casting, forming, machining ,joining, advanced manufacturing methods
- 2. CNC machining, Additive manufacturing
- 3. Fitting operations & power tools
- 4. Electrical & Electronics
- 5. Carpentry
- 6. Plastic moulding ,glass cutting
- 7. Metalcasting
- 8. Welding(arc welding & gas welding), brazing

Suggested Books:

1. Kalpakjian S. And Steven S. Schmid, "Manufacturing Engineering and Technology", 7th edition, Pearson Education India Edition.

2. Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K., " Elements of Workshop Technology", Vol. I 2008 and Vol. II 2010, Media promoters and publishers private limited, Mumbai.

3. Gowri P. Hariharan and A. Suresh Babu," Manufacturing Technology – I", Pearson Education, 2008.

4. Roy A. Lindberg, "Processes and Materials of Manufacture", 4th edition, Prentice Hall India, 1998

5. Rao P.N., "Manufacturing Technology", Vol. I and Vol. II, Tata McGraw-Hill House, 2017.

Biolog	У								
Т	Р	Cred	Major	Minor	Total	Time			
		it	Test	Test					
1	-	3	75	25	100	3h			
To familiarize the students with the basics of Biotechnology									
Outcom	nes								
Introd	uction to	o essential	s of life an	d macromole	cules essentia	al for growth and			
Develo	pment					-			
Defini	ng the b	asic conce	pts of cell	division, gen	es and Immu	ne system			
Introd	uction o	f basic Co	ncept of Th	nermo Geneti	c Engg. & Bio	chemistry			
Introd	uction o	f basic Co	ncept of M	icrobiology &	Role of Biolo	gy in Different			
Fields									
	Biolog T T To fam Outcom Introdu Develo Definin Introdu Fields	Biology T P 1 - To familiarize Outcomes Introduction to Development Defining the b Introduction o Introduction o Fields	Biology T P Cred it 1 - 3 To familiarize the studen 3 Outcomes Introduction to essential Development Defining the basic conce Introduction of basic Conce Introduction of basic Conce Introduction of basic Conce Introduction of basic Conce	Biology T P Cred it Major it 1 - 3 75 To familiarize the students with the 3 75 Outcomes Introduction to essentials of life an Development Defining the basic concepts of cell Introduction of basic Concept of Th Introduction of basic Concept of M Fields	Biology T P Cred it Major Test Minor Test 1 - 3 75 25 To familiarize the students with the basics of Bio Outcomes Introduction to essentials of life and macromole Development Defining the basic concepts of cell division, gen Introduction of basic Concept of Thermo Geneti Introduction of basic Concept of Microbiology & Fields Fields Fields	Biology T P Cred it Major Test Minor Total 1 - 3 75 25 100 To familiarize the students with the basics of Biotechnology To familiarize the students with the basics of Biotechnology Outcomes Introduction to essentials of life and macromolecules essential Development Defining the basic concepts of cell division, genes and Immuni Introduction of basic Concept of Thermo Genetic Engg. & Bio Introduction of basic Concept of Microbiology & Role of Biolog Fields			

Unit – I

Introduction to living world: Concept and definition of Biology; Importance of biology in major discoveries of life Characteristic features of living organisms; Cell ultra -structure and functions of cell organelles like nucleus, mitochondria, chloroplast, ribosomes and endoplasmic reticulum; Difference between prokaryotic and eukaryotic cell; Difference between animal and plant cell.

Classification of organisms: Classify the organisms on the basis of (a) Cellularity;- Unicellular and Multicellular organisms. (b) Energy and Carbon Utilization:- Autotrophs, Heterotrophs and Lithotrophs (c) Habitat (d) Ammonia excretion: - ammonotelic, 23ricotelic and ureotelic. (e) Habitat- aquatic or terrestrial (e) Molecular taxonomy- three major kingdoms of life

Unit-II

Introduction to Biomolecules: Definition, general classification and important functions of carbohydrates, lipids, proteins, nucleic acids (DNA & RNA: Structure and forms). Hierarchy in protein structure : Primary secondary, tertiary and quaternary structure. Proteins as enzymes, transporters, receptors and structural elements. **Enzymes as biocatalysts:** General characteristics, nomenclature and classification of Enzymes. Effect of temperature, Ph, enzyme and substrate concentrations on the activity of enzymes. Elementary concept of and coenzymes. Mechanism of enzyme action. Enzyme kinetics and kinetic parameters (Km and Vmax)

Unit-III

Genetics:-Mendel's laws of inheritance. Variation and speciation. Concepts of recessiveness and dominance. Genet

ic Disorders: Single gene disorders in humans. **Human traits**: Genetics of blood groups, diabetes type I & II. **Cell Division**:- Mitosis and its utility to living systems. Meiosis and its genetic significance. Evidence of nucleic acids as a genetic material. Central Dogma of molecular biology

4. Role of immune system in health and disease : Brief introduction to morphology and pathogenicity o f bacteria, fungi, virus, protozoa beneficial and harmful for human beings.

Unit-IV

Metabolism:-Concept of Exothermic and endothermic reactions. Concept of standard free energy and Spontaneity in biological reactions. Catabolism (Glycolysis and Krebs cycle) and synthesis of glucose (Photosynthesis: - Light and Dark Reaction) of glucose. ATP as Energy Currency of the cell Microbiology: Concept of species and strains, sterilization and media compositions, growth kinetics. Role of Biology :Role of Biology in Agriculture, Medicine, Forensic science, Bioinformatics, Nanotechnology, Micro - electromechanical systems (Bio -MEMS) and Sensors (Biosensors). Text Book:

1. Introduction to Biotechnology, By Deswal & Deswal, Dhanpat Rai Publications N.A

2. Campbell, J. B. Reece, L. Urry, M. L. Cain and S. A. Wasserman, "Biology: A global approach ", Pearson

Education Ltd, 2014.

3. E. E. Conn, P. K. Stumpf, G. Bruening and R. H. Doi, "Outlines of Biochemistry", John Wiley and Sons, 2009.

D. L. Nelson and M. M. Cox, "Principles of Biochemistry", W.H. Freeman and Company, 2012.

4.G. S. Stent and R. Calendar, "Molecular Genetics", Freeman and company, 1978.

Note: The paper setter will set the paper as per the question paper templates provided

Suggested Books:

- 1. Molecular Biology of Cell, 4th ed. Alberts, Bruce et al. Garland Science Publishing, New York.
- 2. Microbiology. Pelczar Jr., M.J.; Chan, E.C.S. and Krieg, N.R. Tata McGraw Hill, New Delhi.

3. Lehninger: Principles of Biochemistry, 3rd edition, by David L. Nelson and M.M. Cox. Maxmillan/ Worth publishers.

- 4. Genetics by Snusted & Simmons.
- 5. Molecular Biotechnology: Principles Application of Recombinant DNA. Glick, B. R. and Pasternak, J. J. ASM press Washington DC.

6. Kuby's Immunology, Goldsby, R A, Kindt, T.J, Osborne, B.A. (2003) W. H. Freeman and company, New York.

7. Recombinant DNA 2nd Edition. Watson, James D. and Gilman, M. (2001) W.H Freeman and Company, NewYork.

8. Essentials of Molecular Biology 4 thed, Malacinski, G. M. (2003) Jones &Bartlet Publishers, Boston.

ES-101	BASIC ELECTRICAL ENGINEERING										
L	Т	Р	Credit	Major Test	Minor Test	Total	Time(H				
							rs)				
4	1	-	5	75	25	100	3				
Purpos	To familiarize the students with the basics of Electrical										
е	Engineering										
	Cou	rse Outcor	nes								
CO1	Deals with	steady sta	ate circui	t analysis subject f	o DC.						
CO 2	Deals with	AC funda	mentals a	& steady state circ	uit response s	subject t	o AC.				
CO 3	Deals with	introducto	ory Balar	nced Three Phas e	System analy	sis and a	Single				
	Phase Transformer.										
CO 4	Explains the	ne Basics o	of Electri	cal Machines & Ele	ectrical install	ations					

Unit-I

D.C. circuits: Ohm's Law, junction, node, circuit elements classification: Linear & nonlinear, active & passive, lumped & distributed, unilateral & bilateral with examples. KVL, KCL, Loop and node-voltage analysis of resistive circuits. Star- Delta transformation for resistors. **Network Theorems:** Superposition, Thevenin's, Norton's and Maximum power transfer theorems in a resistive network.

Unit-II

AC Fundamentals: Mathematical representation of various wave functions. Sinusoidal periodic signal, instantaneous and peak values, polar & rectangular form of representation of impedances and phasor quantities. Addition & subtraction of two or more phasor sinusoidal quantities using component resolution method.RMS and average values of various waveforms.

A.C. Circuits: Behavior of various components fed by A.C. source (steady state response of pureR, pure L, pure C, RL, RC, RLC series with waveforms of instantaneous voltage, current & power on simultaneous time axis scale and corresponding phasor diagrams), power factor, active, reactive & apparent power. Frequency response of Series & Parallel RLC ckts. including resonance, Q factor, cut-off frequency & bandwidth. Generation of alternating emf.

Unit-III

Balanced Three Phase Systems: Generation of alternating 3- phase emf). 3-phase balanced circuits, voltage and current relations in star and delta connections. Measurement of 3-phase power by two wattmeter methods for various types of star & delta connected balanced loads.

Single Phase Transformer (qualitative analysis only): Concept of magnetic circuits.Relation between MMF & Reluctance.Hysteresis & Eddy current phenomenon. Principle, construction & emf equationPhasor diagram at ideal, no load and on load conditions. Losses & Efficiency, regulation. OC & SC test, equivalent circuit, concept of auto transformer.

Unit-IV

Electrical Machines (qualitative analysis only): Construction and working of a dc machine with commutator action, speed control of dc shunt motor. Generation of rotating magnetic fields, Construction and working of a three -phase induction motor, Significance of torque-slip characteristic. Basics of Single-phase induction motor,

capacitor start capacitor run Single-phase induction motor working. Basic construction and working of synchronous generator and motor.

Electrical Installations (LT Switchgear): Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.

Suggested Books:

- 1. Basic Electrical Engg: A complete Solution by Vijay Kumar Garg, Wiley India Ltd.
- 2. Electrical Engg. Fundamentals by Rajendra Prasad, PHI Pub.
- 3. Basic Electrical Engg. by S.K. Sahdev, Pearson Education
- 4. Electrical Engg. Fundamentals: by Bobrow, Oxford Univ. Press
- 5. Basic Electrical Engg. By Del Toro.
- 6. Saxena & Dasgupta: Fundamentals of Electrical Engg (Cambridge University Press).

Note: The paper setter will set the paper as per the question paper templates provided.

ES- 103L	BASIC ELE	BASIC ELECTRICAL ENGINEERING LAB					
L	Т	Pract	Cred	Minor	(Practic	Т	Time (Hrs)
-	-	ical	it 1	Test	al)	ot	3
		2		20	30	al	
						50	
Purpo	To familiarize the students with the Electrical Technology Practicals						
se							
	Cour	se Outcor	nes				
CO1	Understand	basic con	cepts of	Network the	orems		
CO 2	Deals with s	teady stat	e frequer	ncy response	e of RLC circ	uit para	ameters
	solution tec	hniques	-			-	
CO 3	Deals with introductory Single Phase Transformer practicals						
CO 4	Explains the constructional features and practicals of various types of						
	Electrical Ma	achines		-			

LIST OF EXPERIMENTS

1. To verify KVL and KCL.

2. To verify Superposition theorem on a linear circuit with at least one voltage & one current source.

3. To verify Thevenin's Theorem on a linear circuit with at least one voltage & one current source.

4. To verify Norton's Theorem on a linear circuit with at least one voltage & one current source.

5. To study frequency response of a series R-L-C circuit on CRO and

determine resonant frequency & Q- factor for various Values of R, L, and C.

6. To study frequency response of a parallel R-L-C circuit on CRO and

determine resonant frequency & Q - Factor for various values of R, L, and C.

7. To perform O.C. and S.C. tests on a single phase transformer.

8. To perform direct load test on a single phase transformer and plot efficiency v/s load characteristic.

9. To perform speed control of the DC shunt motor.

10. To perform starting & reversal of direction of a three phase induction motor.

11. Measurement of power in a 3 phase balanced system by two wattmeter methods.

12. Study of Cut sections of DC Machines, Induction Motor

13. To study components of various LT Switchgears

Note: At least 9 out of the listed experiments to be performed during the semester.

Course	Course Title	Hours / Week	External	Internal	Total	Credits	Duration
No.			Assessment	Assessment			of exam
GT-301	Introduction to	4	100	50	150	4	3 Hrs
	Geosciences						
GT-302	Physical	4	100	50	150	4	3 Hrs
	Geology						
GT-303	Structural	4	100	50	150	4	3 Hrs
	Geology						
GT-304	Crystallograph	4	100	50	150	4	3 Hrs
	y and						
	Mineralogy						
GT-305	Surveying	4	100	50	150	4	3 Hrs
GT-306	Practical based	12	75	25	100	6	3 Hrs
	on GT-301,						
	GT-302 and						
	GT-304						
GT-307	Practical based	12	75	25	100	6	3 Hrs
	on GT-303 and						
	GT-305						
	Total		650	300	950	32	

M.Tech. Applied Geology (5-Year Integrated Course) 3rd semester

M.Tech. Applied Geology (5-Year Integrated Course) 4th semester

Course	Course Title	Hours/Week	External	Internal	Total	Credit	Duration
No.			Assessment	Assessment		s	of exam
GT-401	Geomorphology	4	100	50	150	4	3 Hrs
GT-402	Geochemistry-I	4	100	50	150	4	3 Hrs
GT-403	Basic Petrology	4	100	50	150	4	3 Hrs
GT-404	Energy Mineral Resources of India	4	100	50	150	4	3 Hrs
GT-405	Computational and Statistical Methods in Geology	4	100	50	150	4	3 Hrs
GT-406	Practical based on GT-402 and GT- 403	12	75	25	100	6	3 Hrs
GT-407	Practical based on GT-401, GT-404 and GT-405	12	75	25	100	6	3 Hrs
	Total		650	300	950	32	

Course	Course Title	Hours/Week	External	Internal	Tota	Credit	Duration
No.			Assessment	Assessment	1	S	of exam
GT-501	Palaeontology	4	100	50	150	4	3 Hrs
	-I						
GT-502	Plate	4	100	50	150	4	3 Hrs
	Tectonics						
GT-503	Igneous	4	100	50	150	4	3 Hrs
	Petrology						
GT-504	Sedimentolog	4	100	50	150	4	3 Hrs
	У						
GT-505	Geophysical	4	100	50	150	4	3 Hrs
	Prospecting						
GT-506	Practical:	12	75	25	100	6	3 Hrs
	Based on GT-						
	501; GT-503						
GT-507	Practical:	12	75	25	100	6	3 Hrs
	Based on GT-						
	502, GT-504,						
	GT-505						
GT-508	Field	5 to 7 days	100	50	150	4	-
	Training-I						
	Total		750	350	1100	36	

M.Tech. Applied Geology (5-Year Integrated Course) 5th semester

M.Tech. Applied Geology (5-Year Integrated Course) 6th semester

Course	Course	Hours/Wee	External	Internal	Total	Credits	Duration of
No.	Title	k	Assessment	Assessment			exam
GT-601	Stratigraphy	4	100	50	150	4	3 Hrs
GT-602	Structural Geology-II	4	100	50	150	4	3 Hrs
GT-603	Metamorphi c Petrology	4	100	50	150	4	3 Hrs
GT-604	Applied Geochemist ry	4	100	50	150	4	3 Hrs
GT-605	Economic and Ore Geology	4	100	50	150	4	3 Hrs
GT-606	Practical : Based on GT-601, GT-602	12	75	25	100	6	3 Hrs
GT-607	Practical : Based on GT-603, GT-604, GT-605	12	75	25	100	6	3 Hrs
	Total		650	300	950	32	

	inours, we com	External	muernai	Tota	Creatts	Duration
		Assessment	Assessme	1		of exam
			nt			
Remote Sensing	4	100	50	150	4	3 Hrs
Technology						
Mineral	4	100	50	150	4	3 Hrs
Exploration						
Micropalaeontolo	4	100	50	150	4	3 Hrs
gy and						
Palynology						
Hydrogeology	4	100	50	150	4	3 Hrs
Petroleum	4	100	50	150	4	3 Hrs
Geology						
Practical: Based	12	75	25	100	6	3 Hrs
on GT-701 and						
GT – 702						
Practical: Based	12	75	25	100	6	3 Hrs
on GT-703, GT-						
704 and GT- 705						
Field Training –	5 to 7 days	100	50	150	4	-
II						
Total		750	350	1100	36	
	Remote Sensing Fechnology Mineral Exploration Micropalaeontolo gy and Palynology Hydrogeology Petroleum Geology Practical: Based on GT-701 and GT – 702 Practical: Based on GT-703, GT- 704 and GT- 705 Field Training – II Fotal	RemoteSensing4Fechnology1Mineral4Exploration4Micropalaeontolo4gyandPalynology4Petroleum4Geology4Petroleum12On GT-701 and12GT – 702704 and GT- 705Field Training –5 to 7 daysII Total	RemoteSensing4100Technology100Technology100Mineral4100Exploration4100Wicropalaeontolo4100gyand100Palynology4100Petroleum4100Geology1275Practical: Based1275on GT-701 and1275on GT-703, GT-75Field Training –5 to 7 days100II750	AssessmentAssessme ntRemote Sensing410050Fechnology410050Fechnology410050Exploration410050Wineral aeontolo410050gyand270Palynology410050Petroleum410050Geology410050Petroleum410050Practical: Based127525on GT-701 and GT - 7027525Practical: Based127525on GT-703, GT- 704 and GT- 7055 to 7 days10050II557 days10050II750350350100100	Assessment Assessment Assessment I Remote Sensing 4 100 50 150 Technology 4 100 50 150 Vineral 4 100 50 150 Exploration 4 100 50 150 Micropalaeontolo 4 100 50 150 gy and - - - Palynology 4 100 50 150 Petroleum 4 100 50 150 Geology - - - - Practical: Based 12 75 25 100 on GT-701 and - - - - - Gr – 702 - - - - - Practical: Based 12 75 25 100 - on GT-703, GT- - - - - - Total 5 t	Assessment Assessment Assessment I Remote Sensing 4 100 50 150 4 Remote Sensing 4 100 50 150 4 Technology 4 100 50 150 4 Exploration 4 100 50 150 4 Micropalaeontolo 4 100 50 150 4 gy and 2 75 150 4 Palynology 4 100 50 150 4 Petroleum 4 100 50 150 4 Geology 12 75 25 100 6 on GT-701 and 12 75 25 100 6 on GT-703, GT- 75 25 100 6 on GT-703, GT- 100 50 150 4 Geology 100 50 150 4 Or

M.Tech. Applied Geology (5-Year Integrated Course) 7th semester

M.Tech. Applied Geology (5-Year Integrated Course) 8th semester

Course	Course Title	Hours/W	External	Internal	Total	Credits	Duration
No.		eek	Assessment	Assessment			of exam
GT-801	Environmental	4	100	50	150	4	3 Hrs
	Geoscience						
GT-802	Coal Geology and	4	100	50	150	4	3 Hrs
	Technology						
GT-803	Mining Geology	4	100	50	150	4	3 Hrs
GT-804	GIS Technology	4	100	50	150	4	3 Hrs
GT-805	Engineering	4	100	50	150	4	3 Hrs
	Geology						
GT-806	Practical: Based	12	75	25	100	6	3 Hrs
	on GT-801 and						
	GT - 804						
GT-807	Practical: Based	12	75	25	100	6	3 Hrs
	on GT-802, GT-						
	803 and GT- 805						
GT-808	Geoscience and	2	35	15	50	2	3 Hrs
(OE-	Society*						
205)							
	Total		685	315	1000	34	
* To	he onted by the stude	ents of other	Departments i	n the science f	aculty.	•	•

To be opted by the students of other Departments in the science faculty.

Course	Course Title	Hours/	External	Internal	Total	Credits	Duration
No.		Week	Assessment	Assessment			of exam
GT-901	Well Logging	4	100	50	150	4	3 Hrs
GT-902	Advanced	4	100	50	150	4	3 Hrs
	Stratigraphy,						
	Palaeogeography						
	and Paleoecology						
GT-903	Organizational	4	100	50	150	4	3 Hrs
	Behavior and						
	Business						
	Management						
	Electi	ves: Any tv	vo of following	four theory su	bjects		
GT-904	Geohazards and	4	100	50	150	4	3 Hrs
	Disaster						
	Management						
GT-905	Geoscientific	4	100	50	150	4	3 Hrs
	Instrumentation						
	and Analytical						
	Techniques						
GT-906	Oceanography and	4	100	50	150	4	3 Hrs
	Marine Geology						
GT-907	Meteorology	4	100	50	150	4	3 Hrs
GT-908	Practical: Based on	12	75	25	100	6	3 Hrs
	GT-901, GT-902						
	and GT-903						
GT-909	Practical: Based on	12	75	25	100	6	3 Hrs
	two elective						
	subjects opted						
GT-910	Natural Hazards [*]	2	35	15	50	2	3 Hrs
(OE-							
305)							
	Total		685	315	1000	34	
	1						

M.Tech. Applied Geology (5-Year Integrated Course) 9th semester

To be opted by the students of other Departments in the science faculty.

M.Tech. Applied Geology (5-Year Integrated Course) 10th semester

Course No.	Course Title	Total	Credits	Duration of Exam
GT-1001	Project work	150	4	-
GT-1002	Dissertation	150	4	-
GT-1003	Viva voce	150	4	-
	Total	450	12	

	INTRODUCTION TO GEOSCIENCES (GT-301)						
Lecture	Credit	Assessment	External	Internal	Total	Exam Duration	
		method	Assessment	Assessment			
4	4	Theory	100	50	150	3 hrs.	
COURSE OBJECTIVE							
To provi	de an ove	rview of Earth	Sciences includ	ling earth proces	sses, resour	ces and geo-hazards.	
			COURSE O	UTCOMES			
1. Studen	ts will ge	et knowledge a	bout Geology	as a discipline a	nd its bran	ches. Earth and solar	
system ar	nd develop	pment of geolo	gy as a subject.				
2. Students will learn about minerals, rocks, groundwater and fossil fuels along with tectonics							
and morphological context of major catastrophic events of geological significance.							
3 Studen	te will le	arn about the	history of life	on earth study	of ecologi	cal spheres and their	

3. Students will learn about the history of life on earth, study of ecological spheres and their relationship with earth's surface.

4. Students will get knowledge about various tools and technologies and their application in earth sciences.

DETAILS OF COURSE:

Unit	Content
1	Geology as an interdisciplinary science. Branches of Geology and their basic
	understanding. Earth's place in the solar system, physical features on its surface, other
	basic features (mass, shape, size, density, etc.). Physical and historical geology.
	Development of Geology: catastrophism, The birth of modern Geology.
2	Basic understanding of minerals, rocks and its types, gemstones, groundwater,
	hydrocarbons and coal. Basic understanding of volcanoes, earthquakes, tsunamis, glaciers,
	landslides, mudflows, avalanches and droughts.
3	Geological time scale. physiographic and geological sub-divisions of India. Evolution of
	life on earth through ages. Physical and chemical properties of earth's spheres:
	hydrosphere, atmosphere and biosphere. Distribution of land and water on earth's surface.
4	Introduction to remote sensing, GIS, GPS and their applications in earth sciences. Mineral
	exploration and its different stages. Basic understanding of geophysical and geological
	methods of exploration.

SUGGESTED BOOKS:

Sr. No.	Name of Books/Authors
1	Understanding the earth, Press, F. and Siever, R., W.H. Freeman & Co.
2	An Introduction to Physical Geology, Tarbuck, Lutgens, Tasa, Eleventh Edition,
	Pearson Publication.
3	Fundamentals of Geophysics, Lowrie, W., Cambridge University Press.
4	An Introduction to the Rock-Forming Minerals, Deer, W.A., Howie, R.A. and Zussman,
	J., ELBS.
5	Rutley's Elements of Mineralogy, Read, H.H., Springer.
6	A Textbook of Geology, Mukerjee, P.K., World Press.

Mapping of Course Outcomes to Programme Outcomes

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-301.1	3	3	3	3	2	3	2	2	3	3	2
GT-301.2	3	3	3	3	2	3	2	2	3	3	2
GT-301.3	3	3	3	3	2	3	2	2	3	3	2
GT-301.4	3	3	3	3	2	3	2	2	3	3	2
Average	3	3	3	3	2	3	2	2	3	3	2

Mapping of Course Outcomes to Programme Specific Outcomes

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-301.1	3	3	3	3
GT-301.2	3	2	2	2
GT-301.3	3	3	2	3
GT-301.4	3	2	3	2
Average	3	2.5	2.5	2.5

PHYSICAL GEOLOGY (GT-302)						
Lecture	Credit	Assessment	External Internal		Total	Exam Duration
		method	Assessment	Assessment		
4	4	Theory	100	50	150	3 hrs.
COURSE OBJECTIVE						
To provide basic understanding of general geology and physical geology.						
COURSE OUTCOMES						
1.Students will get knowledge about internal structure and atmospheric layers of Earth.						
2. Students will learn about various theories of origin of Earth along with historical development						
to the idea of plate tectonics and the concept of plate boundaries.						
3. Students will get to know about causes, effects and tectonic developments of earthquakes and						
volcanism.						

4. Students will learn about concepts of groundwater and a brief introduction to a vast field of mass movements.

DETAILS OF COURSE:

Unit	Content				
1	Introduction to physical Geology. Internal structure of Earth: crust, mantle, core and				
	their constitution; atmosphere: layers and composition of atmosphere.				
2	Different hypotheses of earth's origin. Continental drift and seafloor spreading				
	theories, introduction to plate tectonics, types of plate boundaries, ocean basin				
	features.				
3	Earthquakes: terminology, classification, effects of earthquakes, earthquake intensity				
	scale, focus, epicenter, cause of earthquakes. Volcanoes: type of volcanoes,				
	terminology and products of volcanoes.				
4	Introduction to groundwater: types of water, occurrence of groundwater, aquifer and				
	their types. Introduction to mass movements: types of mass movements. Weathering				
	and its types, erosion. Soil and its type.				

SUGGESTED BOOKS:

Sr.	Name of Books/Authors										
No.											
1	Physical Geology, Holmes, A., Ronal, Wiley Publication.										
2	Essentials of Geology, Marshak, S., John Wiley & Sons.										
3	Understanding the Earth, Press, F. and Siever, R., W. H. Freeman.										
4	Earth: Geologic Principles and Histories, Chernicoff, S., Fox,. H.A. and Tanner, L.H.,										
	Houghton Mifflin.										
5	Physical Geology, Moore, J.S. and Wicander, R., Brooks-Cole.										
6	Textbook of Physical Geology, Mahapatra, G.B., CBS Publication.										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
----------	-----	-----	-----	------	-----	------	-----	-----	------	------	------
GT-302.1	3	3	3	3	3	3	3	3	3	3	3
GT-302.2	3	3	3	2	3	3	2	2	3	3	3
GT-302.3	3	3	3	3	3	2	3	3	2	3	2
GT-302.4	3	3	3	3	3	3	2	2	3	2	3
Average	3	3	3	2.75	3	2.75	2.5	2.5	2.75	2.75	2.75

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-302.1	3	3	3	3
GT-302.2	3	2	3	2
GT-302.3	3	2	2	3
GT-302.4	3	3	3	3
Average	3	2.5	2.75	2.75

STRUCTURAL GEOLOGY (GT-303)											
Lecture	Credit	t Assessment External Internal Total Exam									
		method	Assessment	Assessment							
4	4	Theory	100	50	150 3 hrs.						
COURSE OBJECTIVE											
To disseminate the knowledge about the concept of geologic structure in rocks.											
COURSE OUTCOMES											
1. Studen	ts will ge	t knowledge ab	out unconform	ities and basem	ent-cove	er relationships.					
2. Studen	ts will le	arn about morj	phology, classif	fication and me	echanism	of folding and its					
relationsh	nip with o	ther geological	structures.								
3. Students will get knowledge about faults, joints and their tectonic significance.											
4. Studer	nts will l	earn about ba	sic concepts, d	evelopment ar	nd petrol	ogical features of					
tectonites	5.										

DETAILS OF COURSE:

Unit	Content
1	Introduction to structural geology and its importance in geology. Concept of
	unconformity: definition of unconformity and its types, recognition of
	unconformities and its geological significance. Primary and secondary structures.
2	Folds: introduction, morphology of folds, geometric and genetic classifications of
	folds, Mechanism and causes of folding. Recognition of folds in the field.
3	Faults: introduction, morphology of faults, geometric and genetic classifications of
	faults. Joints: definition, types and classification. Tectonic significance of joints and
	faults.
4	Concept of foliation and cleavage: mechanism of development, foliations in gneisses
	and mylonitic zones. Concept of lineation: basic terminology, lineations related to
	plastic deformation, lineations in the brittle regime.

Sr. No.	Name of Books/Authors
1	Folding and Fracturing of Rocks, Ramsay, J.G., McGraw-Hill.
2	An Outline of Structural Geology, Hobbs, M B.E., Means, W.D. and Williams,
	P.F., Hobbs, M B.E., Means, W.D. and Williams, P.F., John Wiley & Sons.
3	Structural Geology: An Introduction to Geometrical Techniques, Ragan, D.M.,
	,John Wiley & son.
4	Fundamentals of Structural Geology, Pollard, D.D. and Fletcher, R.C., Cambridge
	University Press.
5	Structural Geology, Billings, M.P., Prentice Hall India.
6	Structural Geology, Haakon Fossen, Cambridge University Press.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-303.1	3	2	3	3	2	3	2	3	3	3	2
GT-303.2	3	2	3	2	2	2	3	2	3	2	2
GT-303.3	3	2	3	2	3	2	3	3	3	2	2
GT-303.4	3	2	3	3	2	2	3	2	3	3	2
Average	3	2	3	2.5	2.25	2.25	2.75	2.5	3	2.5	2

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-303.1	3	2	3	3
GT-303.2	3	3	2	3
GT-303.3	3	3	2	3
GT-303.4	3	2	3	2
Average	3	2.5	2.5	2.75

						1					
CRYSTALLOGRAPHY AND MINERALOGY (GT-304)											
Lecture	Credit	Assessment	External	Exam							
		method	Assessment	Assessment		Duration					
4	4	Theory	100	50	150	3 hrs.					
COURSE OBJECTIVE											
To introd	uce the bas	sic concepts of cr	ystallography ar	nd mineralogy.							
	COURSE OUTCOMES										
1.Student	s will get k	knowledge about	various groups o	of minerals and	their physi	ical properties.					
2.Student	s will ge	t knowledge ab	out basic cond	cepts of optication	al mineral	ogy and optical					
classification of minerals.											
3.Students will learn about basic concepts of crystallography.											
4.Student	s will get t	o know about mi	croscopic variat	ions in crystals	and analyt	ical methods.					

DETAILS OF COURSE:

Unit	Content
1	Mineral, definition, different groups of minerals: silicates, carbonates, sulphates, oxides
	and other mineral groups, physical properties of minerals, branches of mineralogy.
2	Principles of optical mineralogy: petrological microscope, nicol prism polarizer, optical
	properties of isotropic and anisotropic minerals in polarized light, optic figures, optical
	sign, uniaxial and biaxial minerals.
3	Crystal: definition, form, unit cell, element of symmetry, parameter and indices, lattice
	concept, holohedral symmetry classes, crystal systems.
4	Crystal defects, polymorphism, isomorphism, pseudomorphism, and twinning, magnetic
	properties of minerals, silicate structures, brief introduction to analytical methods in
	mineral science.

Sr. No.	Name of Books/Authors									
1	Rutley's Elements of Mineralogy, Read, H.H., Twenty-Sixth Edition, George Allen &									
	Unwin Publishers Ltd – 1970.									
2	A Handbook of minerals, Crystals, Rocks and Ores, Parmod, A.O., New India									
	Publishing Agency – 2009.									
3	Modern Crystallography 1: Fundamentals of Crystals, Symmetry, and Methods of									
	Structural Crystallography (Modern Crystallography), Vainshtein, B.K., Springer.									
4	Dana's Manual of Mineralogy, Klein, C., Cornelius, S.H., and Dana, J.D., John Wiley									
	& Sons.									
5	An Introduction to the Rock-Forming Minerals, Deer, W.A., Howie, R.A. and									
	Zussman, J., ELBS.									
6	Crystallography and Crystal Chemistry, Bloss, F.D., Mineralogical Society of America.									

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-304.1	3	2	3	3	2	3	2	3	3	3	2
GT-304.2	3	2	3	2	2	3	3	2	3	2	2
GT-304.3	3	3	3	3	3	2	3	3	3	2	2
GT-304.4	3	2	3	3	2	2	3	2	3	3	2
Average	3	2.25	3	2.75	2.25	2.5	2.75	2.5	3	2.5	2

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-304.1	3	2	3	3
GT-304.2	3	3	3	3
GT-304.3	3	3	2	3
GT-304.4	3	2	3	2
Average	3	2.5	2.75	2.75

SURVEYING (GT-305)										
Lecture	Credit	Assessment	External	Internal	Total	Exam Duration				
		method	Assessment	ssment Assessment						
4	4	Theory	100	50	150	3 hrs.				
	COURSE OBJECTIVE									
To impar	To impart basic understanding of different types of survey methods, their working and									
significan	ce.									
		C	COURSE OUT	COMES						
1.Student	s will get	knowledge about	basic concepts	of table survey	'ing.					
2.Student	s will lear	n various method	s of distance m	easurements an	d levelling	g.				
3.Student	s will lear	n about concepts	of bearing and	compasses.						
4.Student	s will lear	n methods of cont	touring and the	odolite surveyi	ng					

DETAILS OF COURSE:

Unit	Content						
1	Fundamental of surveying: definition, principles of surveying, types of surveying, uses of						
	surveying. Plain table surveying: instruments of plane table, working operations,						
	methods of plane table surveying - radiation method, intersection method, traversing						
	method, re-section method, merits and demerits of plane table.						
2	Measurement of distances: direct measurement, instruments for measuring distance,						
	errors in chaining and tape corrections. Levelling: principles of levelling, different terms						
	of levelling, types of levels and staff, temporary adjustment of levels.						
3	Bearings: whole circle bearing (W.C.B), quadrantal bearing, reduced bearing, fore						
	bearing and back bearing, instruments of measurement of bearing- prismatic compass						
	and surveyor's compass, errors in compass (Prismatic or Surveyor's). Total station						
	method: principal and working.						
4	Contouring: methods of contouring, interpolation of contours, characteristics of contours.						
	Theodolite surveying: instrumentation and working. Tacheometric surveying:						
	introduction, instrument used in tacheometry, principle of tacheometry, methods of						
	tacheometry.						

Sr. No.	Name of Books/Authors
1	Surveying Vol.I, B.C.Punmia, McGraw Hill.
2	Surveying Vol.I, T.P.Kanitkar, Pune Vidyarthi Griha Prakashan.
3	Surveying Vol.2, B.C. Punmia, McGraw Hill.
4	Surveying Vol.2, T.P. Kanitkar, Pune Vidyarthi Griha Prakashan.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-305.1	3	3	3	3	3	3	2	3	3	3	2
GT-305.2	3	2	3	2	2	2	3	2	3	2	2
GT-305.3	3	2	3	2	3	2	3	3	2	2	2
GT-305.4	3	2	2	3	2	2	3	2	3	2	2
Average	3	2.25	2.75	2.5	2.75	2.25	2.75	2.5	2.75	2.25	2

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-305.1	3	2	3	3
GT-305.2	3	3	2	3
GT-305.3	3	3	2	3
GT-305.4	2	2	3	2
Average	2.75	2.5	2.5	2.75

PRACTICAL (GT-306)									
	(Based on GT-301,GT-302 & GT-304)								
Lecture	CreditAssessmentExternalInternalTotalExam durationMethodAssessmentAssessmentAssessmentAssessmentAssessment								
12	6	Practical	75	25	100	3 Hrs.			
		C	OURSE OBJE	ECTIVE					
To impart	knowled	ge and skills for	identification	of minerals in	hand sp	ecimens and under			
microscop	e.								
	COURSE OUTCOME								
Students a	cquire kn	owledge about pr	ocedure of min	neral identificat	tion based	upon macroscopic			
and micro	scopic stu	dy.							

LIST OF PRACTICALS:

- Study of crystal forms in different crystal systems.
- Identification of hand specimens using physical properties.
- Study of properties of minerals under microscope in polarized light.
- Identification of Minerals using X-ray diffraction.
- Determination of hardness, specific gravity, of Minerals and classification on that basis.

PRACTICAL (GT-307)									
	(Based on GT-303 & GT-305)								
Lecture	Lecture Credit Assessment External Internal Total Exam duration Method Assessment Assessment								
12	6	Practical	75	25	100	3 Hrs.			
		С	OURSE OBJE	ECTIVE					
To impart	To impart knowledge and skills surveying methods and study, drawing structures maps.								
COURSE OUTCOME									
Students a	cquire know	wledge of survey	ing methods an	d study, drawin	ng structur	es maps.			

LIST OF PRACTICALS:

• Performing surveys using different methods and techniques, such as: plane table, compass survey, dumpy level, theodolite, total station etc.

• Interpretation and calculations based on data collected by various Survey techniques.

• Contour, stratum contour, dip and strike problem; Completion of outcrop pattern.

Geological maps-cross-section through different types of structures and geological history, Identification of folds and faults in models and geological structures in hand specimens.

GEOMORPHOLOGY (GT-401)									
Lecture	Credit	Assessment	External	Internal	Total	Exam Duration			
		method	Assessment	Assessment					
4	4	4 Theory 100 50 15	150	3 hrs.					
	COURSE OBJECTIVE								
To introduce the different types of landforms and their related processes.									
COURSE OUTCOMES									
1.Students	s will get	knowledge ab	out basic con	cepts of geom	orphology	y and denudational			
processes									
2.Students	s will lear	rn basic concep	ots of river an	nd aeolian ge	omorphol	ogy and landforms			
associated with them.									
3.Students	3.Students will get to know basic concepts of coastal and glacial geomorphology and associated								
landforms	5.								

4.Students will get knowledge about tectonic geomorphology and applied geomorphology.

DETAILS OF COURSE:

Unit	Contents
1	Introduction: development, scope, geomorphic concepts. Landforms: role of lithology,
	endogenous and exogenous forces responsible, climatic and tectonic factors. Denudational
	processes: weathering and its types, erosion, transportation, weathering products and soils
	profiles, types, duricrusts, desert varnish, mass wasting processes and its classification.
2	Fluvial Geomorphology: stream and river processes. Drainage basin: drainage pattern,
	network characteristics, processes of transport, channel geometry, erosional and
	depositional features. Desert Geomorphology: deserts and global wind patterns, erosion,
	transportation and depositional processes of wind.
3	Glacial Geomorphology: formation of glacier ice from snow, morphological and thermal
	classification of glaciers, glacial landforms. Coastal geomorphology: ocean waves,
	currents and swash, longshore and rip currents, littoral drift, marine erosional and
	depositional landforms.
4	Tectonic Geomorphology: geomorphic indicators of tectonic activity and use of
	geomorphic elements such as drainage patterns, fluvial terraces, paleosols and alluvial
	fans in neo-tectonic interpretation. Applied Geomorphology: applications in various fields
	of earth sciences viz. mineral prospecting, geohydrology, civil engineering and
	environmental studies; geomorphology and GIS. Geomorphology of India: geomorphic
	features and zones

Sr. No.	Name of Books/Authors
1	Physical Geology, Holmes, A., Ronald Press.
2	Principles of Geomorphology, Thornbury, W.D., Balkema Publishing House.
3	Fundamentals of Geomorphology, Huggett, R., Routledge Press.
4	Cenozoic Geomorphology, Bloom, A., Eastern Economy Publishers.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-401.1	3	2	3	3	2	3	2	3	3	3	3
GT-401.2	3	3	3	2	2	2	3	3	3	2	2
GT-401.3	3	2	3	3	3	2	3	3	3	2	3
GT-401.4	3	3	3	3	2	2	3	2	3	3	2
Average	3	2.5	3	2.75	2.25	2.25	2.75	2.75	3	2.5	2.5

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-401.1	3	2	3	3
GT-401.2	3	3	2	3
GT-401.3	3	3	3	3
GT-401.4	3	2	3	3
Average	3	2.5	2.75	3

GEOCHEMISTRY (GT-402)							
Lecture	Credit	Assessment	Assessment External Internal Total				
		method	Assessment	Assessment		Duration	
4	4	Theory	100	50	150	3 hrs.	
		CO	URSE OBJECT	ΓΙVΕ			
To introdu	ice basic pr	inciples of geoche	mistry				
		CO	URSE OUTCO	MES			
1.Students	will be abl	e to understand of	jectives and hist	ory of geochen	nistry and fund	damentals of	
thermodyn	thermodynamics.						
2.Students will learn about partitioning in minerals and trace elements.							
3.Students will learn about the geochemistry of radioactive elements.							
4.Students	4.Students will get to know about the geochemistry of stable isotopes.						

DETAILS OF COURSE:

Unit	Content
1	Objective and history of geochemistry: geochemical classification of elements. Cosmic
	abundance of elements and stability, fundamentals of thermodynamics, law of
	thermodynamics, thermodynamics and kinematics.
2	Principles of ionic substitution in minerals: element partitioning in mineral / rock
	formation. Physico-chemical factors in sedimentation. Trace elements. Geochemical
	cycle. Geochemistry of hydrosphere and biosphere.
3	Geochemistry of uranium, thorium, rubidium and strontium; principles of U-Pb, Rb-Sr,
	K-Ar, C-14 methods in dating.
4	Significance of stable isotope geochemistry in geology, isotope fractionation in nature;
	stable isotopes of oxygen, carbon and hydrogen and their determination.

Sr. No.	Name of Books/Authors
1	Introduction to Geochemistry, Mason, B. and Moore, C.B., 1991, Wiley Eastern.
2	Introduction to Geochemistry, Krauskopf, K.B., 1967, McGraw Hill.
3	Principles of Isotope Geochemistry, Faure, G., 1986, John Wiley.
4	Geochemistry, Wedepohl, K.H.Holt, Rinehart and Winston Inc. USA.
5	Geochemistry, Brownlow, A.H. Prentice-Hall.
7	Geochemical Thermodynamics, Nordstrom, D.K. and Munoz, J.L, Blackwell.
8	Hand Book of Exploration Geochemistry, Govett, G.J.S., Elsevier.
9	Using Geochemical data, Rollinson, H., Longman Scientific & Technical NY.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-402.1	3	2	3	3	2	3	2	3	3	3	2
GT-402.2	3	3	3	2	2	2	3	2	3	2	2
GT-402.3	3	2	3	3	3	3	3	3	2	2	2
GT-402.4	3	3	3	3	2	2	3	2	3	3	3
Average	3	2.5	3	2.75	2.25	2.5	2.75	2.5	2.75	2.5	2.25

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-402.1	3	2	3	3
GT-402.2	3	3	3	3
GT-402.3	3	3	2	3
GT-402.4	3	3	3	2
Average	3	2.75	2.75	2.75

BASIC PETROLOGY (GT-403)							
Lecture	Credit	Assessment	External	Internal	Total Exam Dura		
		method	Assessment	Assessment			
4	4	Theory	100	50	150	3 hrs.	
	COURSE OBJECTIVE						
To provid	e basic kr	nowledge of rock	types, their ori	gin, textures an	d structure	es.	
			COURSE OU	FCOMES			
1.Students	s will get	knowledge abo	out origin, diffe	erentiation of n	nagmas ar	nd various structures	
associated	associated with it.						
2.Students will learn about texture, structures, classification and composition of igneous rocks.							
3.Students will get to know about types and agents of metamorphism and classification of							
metamorp	hic rocks						

4.Students will learn about nature, origin, textures and classification of clastic and non-clastic sedimentary rocks.

DETAILS OF COURSE:

Unit	Content
1	Origin of magmas, differentiation of magma: fractional crystallization, liquid
	immiscibility, magma mixing and assimilation. Bowen's reaction series. Intrusive igneous
	activity: nature of intrusive bodies, tabular intrusive bodies, dikes and sills, massive
	intrusive bodies, batholith, lopolith, laccoliths, phacoliths.
2	Igneous Rocks: definition, classification of igneous rocks, mode of occurrence of igneous
	rocks, texture of igneous rocks, structures of igneous rocks, chemical composition and
	mineral composition of igneous rocks, IUGS classification of igneous rock. Description
	of certain important igneous rocks.
3	Metamorphic rocks: metamorphism and their types, agents of metamorphism: heat,
	pressure, differential stress, chemically active fluids. Classification of metamorphic rocks:
	foliated and non- foliated rocks, texture of metamorphic rocks, structure of metamorphic
	rocks.
4	Sedimentary rocks: nature and origin of sedimentary rocks, concept of size, size scales
	mode of sediment transport shape and roundness sphericity. Sedimentary Fabric
	porosity, permeability. Classification of sedimentary structures, geometry of sedimentary
	bodies. Elementary ideas about sandstones, conglomerates, shales, limestones and
	dolomites. Basic classification of clastic and non- clastic sedimentary rocks.

Name of Books/Authors Sr. No. Petrology: The Study of Igneous, Sedimentary and Metamorphic Rocks, Raymond, L.A., 1 McGraw Hill College. Igneous and Metamorphic Petrology, Best, M.G., Wiley-Blackwell. 2 3 Introduction to Metamorphic Petrology, Yardley, B.W.D., Longman Scientific and Technical. 4 Sedimentary Petrology, Tucker, H.E., Wiley-Blackwell. 5 Sedimentary Rocks, Pettijohn, F.J., Harper-Collins. Principles of Metamorphic Petrology, Vernon, R.H., and Clarke, G., Cambridge 6

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-403.1	3	3	3	3	2	3	2	3	3	3	2
GT-403.2	2	2	3	2	2	2	3	2	3	2	2
GT-403.3	3	3	3	2	3	2	3	3	3	2	2
GT-403.4	3	2	3	3	2	2	3	2	3	3	2
Average	2.75	2.5	3	2.5	2.25	2.25	2.75	2.5	3	2.5	2

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-403.1	3	2	3	3
GT-403.2	3	3	2	3
GT-403.3	3	3	2	3
GT-403.4	3	2	3	2
Average	3	2.5	2.5	2.75

ENERGY MINERAL RESOURCES OF INDIA (GT-404)							
Lecture	Credit	Assessment	External	Internal	Total	Exam Duration	
		method	Assessment	Assessment			
4	4	Theory	100	50	150	3 hrs.	
		CO	DURSE OBJE	CTIVE			
To introdu	uce student	s with the major e	energy mineral	resources of In	dia.		
		CO	DURSE OUTC	COMES			
1.Student	s will get	acknowledged	about the en	ergy scenario	, product	ion, demand and	
consumpt	ion of impo	ortant mineral reso	ources in the w	orld and India.			
2.Students will learn about origin, types, physical and chemical properties of coal and its							
geographical and geological distribution in India.							
3.Students will get to know about origin, migration and entrapment of petroleum along with							
brief overview on oil and gas potential of India.							

4.Students will get acknowledged to concepts of nuclear energy and nuclear energy scenario of India and its future prospects.

DETAILS OF COURSE:

Unit	Content
1	A brief overview of energy mineral resources of India and their contribution to the total
	energy demands of the country, linkage of industrialization with energy consumption,
	sources of renewable and non-renewable energy, suitability of different parts of India for
	harnessing different types of renewable energy. Importance of sustainable energy
	resources in the development of the country.
2	Coal: definition, types, coalification process, rank of coal, properties of coal: moisture,
	ash content, volatile matter, present day peat bogs and swamps, important gondwana and
	tertiary coal fields of India, coal production.
3	Source rock, reservoir rock, traps, migration of oil and gas, characteristics of reservoir
	rocks and cap rock, major oil and gas fields of India, India's oil and gas reserves-position
	in the world and future prospects.
4	Radioactivity and nuclear energy, important atomic minerals, their mode of occurrence
	and association, U and Th deposits of India, production, reserves and future scenario.
	Nuclear power production and its potential in India. Peaceful uses of nuclear energy,
	nuclear environmental hazards.

Sr. No.	Name of Books/Authors					
1	Economic mineral deposits, Bateman, A.M., Chapman and Hall.					
2	Ore Deposits of India, Gokhale and Rao, Thomson Press, Delhi.					
3	India's mineral resources, Krishnaswami S., Oxford & IBH.					
4	A Handbook of minerals, Crystals, Rocks and Ores, Parmod, A.O., New India					
	Publishing Agency – 2009.					
5	Economic Geology - Economic Mineral Deposits of India,, Prasad, U., CBS Publishers					
	Ltd.					

6	Textbook of coal (Indian Context), Chandra, D., Singh R.M. and Singh. M.P., Tata book									
	Agency, Varanasi.									
7	Coal and Organic Petrology, Singh, M.P. (Ed), Hindustan Publication Ltd. New Delhi.									
8	Introduction to Petroleum Geology, Holson, G.D., Tiratsoo, E.N., Gulf Publication									
	Houston, Texas – 1985.									
9	Geology of Petroleum, Laverson, A.I., W. H. Freeman and company.									
10	Petroleum Geology, North, F.K., Kluwer Academic Publisher.									

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-404.1	3	2	3	3	2	3	2	3	3	3	3
GT-404.2	3	2	3	2	2	2	3	2	3	2	3
GT-404.3	3	2	3	2	3	2	3	3	3	2	3
GT-404.4	3	2	3	3	3	3	3	2	3	3	3
Average	3	2	3	2.5	2.5	2.5	2.75	2.5	3	2.5	3

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-404.1	3	2	3	3
GT-404.2	3	3	3	3
GT-404.3	3	3	3	3
GT-404.4	3	3	3	2
Average	3	2.75	3	2.75

COMPUTATIONAL AND STATISTICAL METHODS IN GEOLOGY										
(GT-405)										
Lecture	Lecture Credit Assessment External Internal Total Exam Duration									
		method	Assessment	Assessment						
4	4	Theory	100	50	150	3 hrs.				
		(COURSE OBJE	ECTIVE						
To provid	le basic co	oncepts of con	nputing techniq	ues and statis	tical met	hods applicable to				
geological	problems.									
		(COURSE OUT	COMES						
1.Students will get acknowledged about the role of mathematical techniques in geo-sciences with										
a quick rewind of basic computer concepts.										
2.Students	will get to	learn various m	ethods of data h	andling and rep	resentatio	on.				
2 Studente	will got	Imorriladaa	f havin compar	to of commut	an langu	and anophical				

3.Students will get knowledge of basic concepts of computer language and graphical representation of data.

4.Students will learn about statistical techniques and their application in geology.

DETAILS OF COURSE:

Unit	Content
1	Role of mathematical and numerical techniques in geo-sciences, qualitative and quantitative data in geology; application of computer in general database of geology. Computer system hardware: operating system, DOS and its use.
2	Spreadsheets: workbook, worksheet, cell and cell reference, type of data, Functions and formulas, cell range and reference in formula; protecting worksheets; sorting and filtering data; numerical integration by simpson's method, trapezoidal method. Utility of open source and other common softwares in calculating statistical parameters and presenting them in graphic manner.
3	Graphs: collection and selection of data, linear and logarithmic scale, linear graphs, 2d and 3d graphs, bar graphs, scatter plots, pie diagrams etc, use of graphs in geoscience. Data types, expressions and statements, interactive statements, input/output statements subroutine and functions. Utility of google-earth software in understanding earth features and geomorphic-tectonic units, least square fit to the given data.
4	Statistical techniques: mean, mode, median, cumulative frequency distribution, skewness & kurtosis, graphical representation on histograms and curves, regression analysis, linear regression, correlation and correlation coefficients, application of these methods in geology.

Sr. No.	Name of Books/Authors
1	Statistics of Earth science Data, Borradaile, G.J., Springer.
2	Elementary Numerical Analysis, Atkinson, K., Han John, W., John Wiley & Sons.
3	Applied Numerical Methods, Yang, W.Y., Cao, W., Chung, T.S., John Wiley & Sons.
4	Numerical Recipes: The Art of Scientific Computing, Press, W.H., Teukolsky, S.A.,

	Vellerling, W.T., Flannery, B.P., Cambridge University Press.
5	Statistics and Data Analysis in Geology, Davis, J.C., 3 rd Ed., John Wiley & Sons.
6	Computer Oriented Numerical Methods, Rajaraman, V., Prentice Hall of India

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-405.1	3	2	3	3	2	3	2	3	3	3	2
GT-405.2	3	3	3	2	2	2	3	2	3	2	2
GT-405.3	3	2	3	2	3	2	3	3	3	2	3
GT-405.4	3	3	3	3	2	3	3	2	3	3	3
Average	3	2.5	3	2.5	2.25	2.5	2.75	2.5	3	2.5	2.5

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-405.1	3	2	3	3
GT-405.2	3	3	2	3
GT-405.3	3	3	2	3
GT-405.4	3	2	3	2
Average	3	2.5	2.5	2.75

PRACTICAL (GT-406)										
(Based upon GT-402 & GT-403)										
Lecture	LectureCreditAssessmentExternal AssessmentInternal AssessmentTotalExam duration									
12	6	Practical	75	25	100	3 Hrs.				
		(COURSE OBJE	ECTIVE						
To introdu	ice studen	ts about identifica	ation of rock sar	nples based on a	macroscoj	pic and				
microscop	oic propert	ies.								
COURSE OUTCOME										
Students w	vill get acl	knowledged abou	t identification of	of rock samples	based on	macroscopic and				

microscopic properties.

LIST OF PRACTICALS:

- Study of different rock types in hand specimens.
- Microscopic study of mineral assemblages of different igneous, metamorphic and sedimentary rocks.
- Exercise based on CIPW norms.

PRACTICAL (GT-407) (Based upon GT-401,GT-404 & GT-405)										
Lecture	LectureCreditAssessmentExternal AssessmentInternal AssessmentTotalExam duration									
12	6	Practical	75	25	100	3 Hrs.				
		C	COURSE OBJE	CTIVE						
To introdu	ice studen	ts to computation	al and statistical	methods applic	ation in e	arth science.				
COURSE OUTCOME										
Students v	Students will get acknowledged about computational methods and its use in solving statistical									
and other	problems	in earth science.								

LIST OF PRACTICALS:

- Spreadsheets for solving mathematical and statistical problems in earth science.
- Spreadsheets used in statistical exercises based on geo-scientific data.
- Creating graphs from tabular data: linear, 2d and 3d.
- Trigonometry: dip, apparent dip, strike, slope and other related problems.
- Exercises based on energy mineral resources of India.
- Exercises based on morphometry of river channels (drainage pattern, stream order, sinuosity)

PALAEONTOLOGY-I (GT-501)										
Lecture	ecture Credit Assessment External Internal Total Exam Duratio									
		method	Assessment	Assessment						
4	4	Theory	100	50	150	3 hrs.				
COURSE OBJECTIVE										
To introd	uce basic	concepts in paleo	ntology: inverte	brate, vertebrate	e and plant	fossils.				
			COURSE OU	TCOMES						
1. Studen	ts will get	introduced to the	study of fossils	and evolutiona	ry history o	of life.				
2. Studer	2. Students will get acknowledged with morphology and classification of major vertebrate and									
invertebrate fossil species.										
3. Studen	3. Students will learn about concepts of micropalaeontology and palaeobotany.									
4 0 1		1 1 1 0			•					

4. Students will get knowledge of palynology and its application in geosciences.

DETAILS OF COURSE:

Unit	Content
1	Fundamentals: definition, objectives and scope, nature of fossil record and their uses,
	classification of animals, their habits and habitats, evolution of life through the ages,
	migration, dispersal and extinction of life.
2	Invertebrate paleontology: morphology, classification, evolutionary trends, geological
	history and geographical distribution of brachiopods, pelecypods, gastropods, cephalopods,
	trilobita, echinoides, coelenterates and graptolites, vertebrate paleontology- basic concepts,
	broad classification of groups.
3	Micropaleontology: introduction, techniques of processing of samples, brief morphology and
	classification of foraminifera, ostracods, radiolarians and conodonts. Palaeobotany:
	introduction, gondwana flora.
4	Basics of palynology and its applications, applied aspects: age determination and correlation,
	palaeoecological interpretations with case histories, fossils as a tool in petroleum
	exploration.

Sr. No.	Name of Books/Authors
1	An Introduction to the Study of Fossil Plants, Walton, J., Adam & Charles Black.
2	Paleontology Invertebrate, Woods, H., CBS Publications.
3	Vertebrate Paleontology, Benton, M.J., Chapman & Hall.
4	Paleontology, Colbert, R.L., John Willey & Sons.
5	Invertebrate Paleontology, Schrock Twenhofel, McGraw Hill.
6	Biostratigraphy: Microfossils & Geological Time, McGowran, B., Cambridge University
	Press.
7	Microfossils, Second Edition, Howard A. Armstrong & Martin D. Brasier, Blackwell
	Publication.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-501.1	3	3	3	3	2	3	2	3	3	3	3
GT-501.2	3	2	3	2	3	2	3	2	3	2	2
GT-501.3	3	3	3	2	3	2	3	3	3	2	3
GT-501.4	3	2	3	3	3	3	3	2	3	3	2
Average	3	2.5	3	2.5	2.75	2.5	2.75	2.5	3	2.5	2.5

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-501.1	3	2	3	3
GT-501.2	3	3	2	3
GT-501.3	3	3	2	3
GT-501.4	3	2	3	2
Average	3	2.5	2.5	2.75

	PLATE TECTONICS (GT-502)						
Lecture	ure Credit Assessment External Internal Total Exam Duratio						
		method	Assessment	Assessment			
4	4	Theory	100	50	150	3 hrs.	
	COURSE OBJECTIVE						
To impart	in-depth u	inderstanding of	types of plate be	oundaries and d	ifferent ge	eological processes	
and featur	es at plate	boundaries.					
			COURSE OUT	COMES			
1. St	udents will	ll get knowledg	ge about plate	tectonics and	their mo	vement along with	
structural	and seisme	ological features					
2. St	2. Students will learn about the origin and evolution of constructive and conservative plate						
boundaries and structures related to them.							
3. St	udents will	l get a deep insig	ht on destructive	e plate boundari	es and ass	sociated features.	
4. St	udents wil	l get acknowled	ged to concepts	of orogenesis	and a det	ailed description of	

Indian plate with special emphasis on himalayan orogeny.

DETAILS OF COURSE:

Unit	Content
1	Introduction to plate tectonics: historical background, evidence of plate motion, plate
	driving force, lithosphere, asthenosphere, types of place boundaries and sense of
	displacements of plates, oceanic and continental types of lithosphere, constituents, major
	structural seismological features of the earth interior.
2	Constructive plate boundaries: origin and evolution, internal and external structure,
	composition; gravity anomaly. Conservative plate boundaries: structure and evolution,
	transforms faults and plate motions, seismicity, palaeomagnetism and its application in
	plate palaeo positions.
3	Destructive plate boundaries: surface manifestations, geophysical and geological
	characteristics: gravity anomaly, sedimentological, metamorphic and magmatic
	characteristics; associated geological features: oceanic trenches, island arc, volcanic arcs,
	accretionary wedges, fore and back arc basin.
4	The Wilson cycle; orogenesis: plate tectonics and mountain building processes, Indian
	plate: configuration and characters of Indian plate margins and palaeo positions of Indian
	plate, Himalayan orogeny and tectonic models.

Sr. No.	Name of Books/Authors
1	Plate Tectonics and Crustal Evolution, Condie, K.C., Butterworth-Heinemann.
2	Understanding the Earth, Brown, G.C., Hawkesworth, C.J. and Wilson, R.C.I. (Eds.),
	Cambridge University Press.
3	Global Tectonics, Kearey, P. and Vine, F.J., Blackwell.
4	Plate Tectonics: How it Works, Cox, A., Hart, R.B., Wiley-Blackwell.
5	Geology of the Himalayas, Gansser, A., John Wiley & Sons.
6	Dynamic Earth: Plates, Plumes and Mantle Convection, Davies, G.F., Cambridge
	University Press.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-502.1	3	2	3	3	2	3	2	3	3	3	3
GT-502.2	3	2	3	2	2	2	3	2	3	2	2
GT-502.3	3	2	3	2	3	3	3	3	2	2	2
GT-502.4	3	2	3	3	2	2	3	2	3	3	3
Average	3	2	3	2.5	2.25	2.5	2.75	2.5	2.75	2.5	2.5

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-502.1	3	2	3	3
GT-502.2	3	3	2	3
GT-502.3	2	3	2	2
GT-502.4	3	2	3	2
Average	2.75	2.5	2.5	2.5

	IGNEOUS PETROLOGY (GT-503)						
Lecture	Credit	Assessment	External	Internal	Total	Exam	
		method	Assessment	Assessment		Duration	
4	4	Theory	100	50	150	3 hrs.	
		C	OURSE OBJE	CTIVE			
To provi	de in-dep	th knowledge	of igneous roc	ks including	their fab	ric, geochemical	
characteri	stics and p	petrogenesis.					
		C	OURSE OUTC	COMES			
1. St	udents wil	l get detailed kn	owledge about	generation and	differenti	ation of magma.	
2. St	udents wil	ll learn detailed	classification of	of igneous rock	ks and me	ethods associated	
with it.	with it.						
3. St	3. Students will get introduced to vast concepts of phase rule and various phase						
diagrams to understand the crystallization behavior of igneous rocks; Trace elements as							
petrogene	petrogenetic indicators.						
4. St	udents wi	ll learn about t	he relationship	of magmatism	n with pla	ate tectonics and	

global tectonic processes.

DETAILS OF COURSE:

Content
Generation of magma: magma from partial melting in mantle, magma generation in
crust, magma differentiation: fractional crystallization, gravitational differentiation,
liquid immiscibility, magma mixing, assimilation and contamination of magma.
Classification and occurrence of igneous rocks: acidic rocks, intermediate rocks,
basic rocks, ultramafic rocks, alkaline rocks, carbonatites. concept of CIPW norms,
variation diagrams in igneous petrology.
Phase diagrams: binary and ternary phase diagrams, geochemical characteristics of
igneous rocks as petrogenetic indicators: Rb-Sr Isotope evolution in igneous rocks;
Sm–Nd systematics as petrogenetic indicators.
Magmatism and global tectonic processes: magmatism at constructive plate margin,
mid oceanic ridges, ocean floor magmatism, magmatism at destructive plate margin,
subduction zone magmatism, island arc systems, intraplate magmatism: concept and
continental flood basalts.

Sr. No.	Name of Books/Authors
1	Igneous and Metamorphic Petrology, Best, M.G., Second Edition, Backwell.
2	Igneous Petrogenesis: A Global Tectonic Approach, Willson, M., Unwin-Hyman.
3	An Introduction to Igneous and Metamorphic Petrology, Winter, J., Prentice Hall.
4	Igneous Petrology, Hall, A., John Wiley & Sons.
5	Igneous Rocks and Processes – A Practical Guide, Gill, R., Wiley Blackwell.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-503.1	3	2	3	3	2	3	2	3	3	3	2
GT-503.2	3	2	3	2	2	2	3	2	3	2	3
GT-503.3	3	3	3	3	3	2	3	3	3	2	3
GT-503.4	3	2	3	3	2	2	3	2	3	3	3
Average	3	2.25	3	2.75	2.25	2.25	2.75	2.5	3	2.5	2.75

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-503.1	3	2	3	3
GT-503.2	3	3	2	3
GT-503.3	3	3	3	3
GT-503.4	3	2	3	2
Average	3	2.5	2.75	2.75

SEDIMENTOLOGY (GT-504)										
Lecture	Credit	Assessment	Total	Exam						
		method	Assessment	Assessment		Duration				
4	4	Theory	100	50	150	3 hrs.				
	COURSE OBJECTIVE									
To provide	To provide in-depth knowledge of sedimentary processes including depositional environments.									
COURSE OUTCOMES										
1. Stu	dents will	get acknowledged	l with detailed	classification,	textures ar	nd structures				
associated	with coarse	grained siliciclasti	c rocks and a va	ast family of sar	ndstones.					
2. Stu	dents will l	earn about classifi	cation, textures	, structures of o	clay bearing	rocks and a				
deep insight on carbonaceous sedimentary rocks.										
3. Stu	3. Students will get knowledge about chemical sedimentation in sea and rocks associated									
with it with	n a brief int	roduction to the tec	chniques of heav	y mineral sepa	ration and p	alaeo current				

analysis.

4. Students will learn about broad concepts of sedimentary environments and facies.

DETAILS OF COURSE:

Unit	Content
1	Gravels, conglomerates and breccias: composition, texture, structure and classification
	orthoconglomerate paraconglomerate, intra formational conglomerates, diagenesis of
	conglomerates pseudo conglomerates, pseudo breccia sandstones: fabric, structure,
	mineralogy, classification of sandstones, greywackes, matrix problem, soda problem,
	occurrence and geological signifacence, arkose, definition, fabric and composition, lithic
	sandstones and quartz arenites; definition, origin and geological significance.
	Diagenesis of sandstone: cementation, decementation, matrix and cement.
2	Shales, argillites and siltstones: definition, textures, structures. Clay minerals:
	composition and structure, occurrence and origin clay minerals. Diagenesis of shale:
	compaction, diagenetic classification of shales, residual clays; red, balck siliceous and
	calcareous shales, marls, loess and its origin. Limestones and dolomites: shallow and
	deep sea carbonates, fresh water, carbonates. Textures and structures of carbonates.
	Classification of evaporitic and aeolian
3	Chert: definition, origin and classification glauconite, pyrite and barite nodules, oncolites.
	provenance, mineral stability maturity of sediments: compositional and textural. Heavy
	minerals: definition, method of separation and geological significance. Paleocurrent
	analysis and its significance. Lithification and diagenesis.
4	Physico-chemical condition of sedimentation: Nature of depositing medium, depth of
	water, current velocity, salinity and temperature, classification of sedimentary
	environments, Alluvial fans, braided and meandering fluvial systems, lacustrine, eolian
	and glacial deposits, deltas, clastic shelf, continental slope and pelagic sediments:
	tectonic setting and sedimentology. Sedimentary facies. Flysch molasse sedimentary
	basin in plate tectonic settings.

SUGGESTED BOOKS:

Sr. No.	Name of Books/Authors								
1	Origin of Sedimentary Rocks, Blatt, H., Middleton, G.V. and Murray, T.G., Prentice								
	Hall.								
2	Principles of Sedimentology and Stratigraphy, 4 th Ed., Boggs, S., Prentice Hall.								
3	Sedimentology and Sedimentary Basins, Leeder, M.R., Prentice Hall.								
4	Sedimentary Environments – Processes, Facies and Stratigraphy, Reading, H.G.,								
	Wiley-Blackwell.								
5.	Sedimentary rocks, Pettijohn, F.J., CBS Publishers.								

Mapping of Course Outcomes to Programme Outcomes

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-504.1	3	3	3	3	2	3	2	3	3	3	3
GT-504.2	3	2	2	2	2	2	3	2	3	2	3
GT-504.3	3	3	3	2	3	2	3	3	3	2	2
GT-504.4	3	2	3	3	2	3	3	2	3	3	2
Average	3	2.5	2.75	2.5	2.25	2.5	2.75	2.5	3	2.5	2.5

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-504.1	3	2	3	3
GT-504.2	3	3	2	3
GT-504.3	3	3	2	3
GT-504.4	3	2	3	2
Average	3	2.5	2.5	2.75

GEOPHYSICAL PROSPECTING (GT-505)										
Lecture	Credit	Assessment	External	Internal	Exam Duration					
		method	Assessment	Assessment						
4	4	Theory	100	50	150	3 hrs.				
COURSE OBJECTIVE										
To introd	To introduce basic concepts of geophysical methods and their applications in solving geological									
problems.										
			COURSE O	UTCOMES						
1. St	udents wi	ll get introduce	d to geophysic	al methods of	prospectin	g along with a detailed				
study of gravity methods.										
2. Students will learn about principles, interpretations and applications of magnetic method of										
prospectin	ng.									

3. Students will get to know about reflection and refraction of seismic waves and prospecting techniques related to them.

4. Students will get acknowledged to principles and applications of electrical and electromagnetic method of prospecting.

DETAILS OF COURSE:

Unit	Content
1	Introduction: overview and importance of various geophysical methods in geological
	studies, gravity method: basic principles, gravity anomalies, gravimeters, data acquisition
	procedures, data reduction and processing, interpretation of bouguer anomalies for basic
	geometrical shapes, depth rules, applications.
2	Magnetic method: basic principles, magnetic anomalies, magnetometers, data acquisition
	procedures, data reduction and processing, interpretation of magnetic anomalies for basic
	geometrical shapes, depth rules, applications.
3	Seismic methods: refraction, reflection and attenuation of seismic waves, geophones and
	hydrophones, recording instruments, seismic refraction method, travel time curves for flat
	interfaces, interpretation of refraction profiles, seismic reflection method, CDP shooting,
	elementary ideas about processing and interpretation of seismic reflection data:
	application.
4	Electrical method: apparent resistivity, sounding and profiling, different electrode
	configurations, field procedures, resistivity meters, data interpretation using curve
	matching method, applications. Electromagnetic methods: basic concepts, dip angle
	techniques, measurement of amplitude and phase, various transmitter and receiver loop
	configurations, applications.

Sr. No.	Name of Books/Authors										
1	Applied Geophysics, Telford, W.M., Geldart, L.P. and Sheriff, R.E., Cambridge										
	University Press.										
2	An Introduction to Geophysical Exploration, Blackwell.										
3	Principles of Applied Geophysics, Parasnis, D.S., Kearey, P. Brooks, M. and Hill, I.,										
	Chapman and Hall.										

4 Introduction to Geophysical Prospecting, Dobrin, M.B. and Savit, C.H., McGraw-Hill.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-505.1	3	2	3	3	3	3	2	3	3	3	2
GT-505.2	3	3	3	2	2	3	3	2	3	2	2
GT-505.3	3	3	3	2	3	2	3	3	3	2	2
GT-505.4	3	2	3	3	3	2	3	2	3	3	3
Average	3	2.5	3	2.5	2.75	2.5	2.75	2.5	3	2.5	2.25

Mapping of Course Outcomes to Programme Outcomes

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-505.1	3	2	3	3
GT-505.2	3	3	2	3
GT-505.3	3	3	2	3
GT-505.4	3	2	3	2
Average	3	2.5	2.5	2.75

PRACTICAL (GT-506)								
(Based on GT-501 & 503)								
Lecture	ecture Credit Assessment External Internal Total Exam duration Method Assessment Assessment							
12	6 Practical 75 25 100					3 Hrs.		
COURSE OBJECTIVE								
To impart	To impart knowledge of microscopic interpretation of Igneous rocks and study of fossils.							
COURSE OUTCOME								
Students of	come to k	now about the pr	ocedure of mich	roscopic study	of igneou	s rock thin sections		
and study	of fossils							

LIST OF PRACTICALS:

- Megascopic study of important invertebrate, vertebrate and plant fossils, Microscopic study of important invertebrate and vertebrate fossils and palynomorphs.
- Microscopic studies of acidic, basic and ultramafic igneous rocks.
- Geochemical variation diagram studies.
- CIPW normative calculations based on geochemical data.

PRACTICAL (GT-507)									
	(Based on GT-502, GT-504 & GT-505)								
LectureCreditAssessmentExternalInternalTotalExam durationMethodAssessmentAssessmentAssessmentAssessmentAssessmentAssessment									
12	6	Practical	75	25	100	3 Hrs.			
COURSE OBJECTIVE									
To provide in-depth practical knowledge of sedimentary rocks and geophysical methods.									
COURSE OUTCOMES									
Students v	vill get kno	owledge about sec	diments and sed	imentary rocks	, and geop	hysical methods.			

LIST OF PRACTICALS:

- Grain size analysis using sieves and its statistical analysis.
- Determination of roundness of elastic particles using comparison chart method.
- Statistical analysis of orientation data.
- Thin section study of sandstones and limestone.
- Recognition of major clay minerals from x-ray diffractograms.
- Geophysical practicals & exercises.

FIELD TRAINING-I (GT-508)								
	Assessment	External	Internal	Total	Exam Duration			
Credit	method	Assessment	Assessment					
4	Field Training	100	50	150				
COURSE OBJECTIVE								
To impart understanding of small scale mapping methods, sampling in the field and using								
different tools and instruments in the field.								
COURSE OUTCOME								
Students will get knowledge about methods of Geological mapping, sampling and learn use of								
tools and ins	struments in the field	and learn about pr	reparing field tra	aining repor	rts.			

STRATIGRAPHY (GT-601)								
Lecture	Credit	Assessment	External	Internal	Total	Exam Duration		
		method	Assessment	Assessment				
4	4	Theory	100	50	150	3 hrs.		
	COURSE OBJECTIVE							
To provide basic understanding of principles of stratigraphy, stratigraphic contacts geological								
time scale and stratigraphic sequences of India								
COURSE OUTCOMES								
1. Students will get knowledge about basic principles of stratigraphy and geological time								
scale.								
2. Students will learn about conformable and unconformable contacts in detail and basic								
concepts of correlation.								
3. St	udents wi	ll get acknowle	dged with var	ious branches	of stratig	raphy with special		
emphasis on sequence stratigraphy								

emphasis on sequence stratigraphy.4. Students will get detailed knowledge about major stratigraphic systems of India.

DETAILS OF COURSE:

Unit	Content
1	Define stratigraphy: scope of stratigraphy, principles of stratigraphy, Geological time
	scale, purpose, scope and their development.
2	Stratigraphic contacts: conformity, contacts in conformable strata. Unconformity:
	angular unconformity, disconformity, paraconformity, and nonconformity.
	Correlation: scope of correlation, types of correlation-lithological, biological and
	chrono-correlation.
3	Stratigraphic units: classification and nomenclature of units (lithostratigraphy,
	biostratigraphy, chronostratigraphy and geochronology). Facies: transgression and
	regression. Systems tracts: lowstand, transgressive, highstand, falling stage.
4	Broad outline of some of the major stratigraphic sequences of India, Dharwar
	System, Cuddapah System, Vindhyan System, Spiti Group, Salt range, Deccan
	Traps, Kutch area, Gondwana Group, Siwalik System, assam area stratigraphic units
	of India.

Sr. No.	Name of Books/Authors						
1	Principles of Stratigraphy, Lemon, R.L., Merrill Publishing.						
2	Fundamentals of Historical Geology and Stratigraphy of India, Boggs, S., Jr. Wiley.						
3	Fundamentals of Historical Geology and Stratigraphy of India, Kumar, R., New age						
	International Publisher.						
4	Geology of India and Burma, Krishan, M.S., CBS Publications.						
5	Geology of India, Wadia, D.N., Tata Mc-Graw Hill.						
6	Geology of India, Vol. I and II, Ramakrishnan, M. and Vaidyanathan, R.,						
	Geological Society of India.						

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-601.1	3	2	3	3	2	3	2	3	3	3	3
GT-601.2	3	2	3	2	2	2	3	2	3	2	3
GT-601.3	3	2	3	2	3	2	3	3	3	2	3
GT-601.4	3	2	3	3	2	2	3	2	3	3	2
Average	3	2	3	2.5	2.25	2.25	2.75	2.5	3	2.5	2.75

COs/PSOs	PSO1	PSO2	PSO3	PSO4								
GT-601.1	3	2	3	3								
GT-601.2	3	3	3	3								
GT-601.3	3	3	2	3								
GT-601.4	3	3	3	2								
Average	3	2.75	2.75	2.75								
STRUCTURAL GEOLOGY-II (GT-602)												
--	---	-----------------------	------------------------	------------------------	---	------------------	--	--	--	--	--	--
Lecture	Credit	Assessment method	External Assessment	Internal Assessment	Total	Exam Duration						
4	4	Theory	100	50	150	3 hrs.						
	COURSE OBJECTIVE											
To introduce the students to various geological structures and their mechanism of formation.												
	COURSE OUTCOMES											
1. Th	ne student	s can learn about	the stress and	strain analytic	al techniqu	es and their						
geologica	geological significance.											
2. Th	2. The students can learn about geometrical analysis of various structures and mechanisms											
of folding.												
3. Th	3. The students will get to know about principles and geological significance of shear zones.											
4. Th	ne students	s will learn detailed	descriptions of t	tectonites and an	The students will learn detailed descriptions of tectonites and an overview of superposed							

folding.

DETAILS OF COURSE:

Unit	Content
1	Stress: Stress in homogeneous and inhomogeneous media and analytical techniques.
	Strain: homogeneous strain and techniques of strain analysis including fry method, grain
	centre method and Rf / Φ method, types of strain ellipses and ellipsoids, their properties
	and geological significance.
2	Geometrical analysis of various structures: geometry and analysis of fractures, joints and
	faults, geometry of folds and their classification schemes, mechanism of folding and
	internal strain accumulation.
3	Shear Zones: shear sense indicators, shear zone kinematics. role of fluids and techniques
	of their analysis, geological importance, basic idea on the structure and tectonics of
	Himalaya.
4	Analysis of foliation and lineation in rocks: geometry, mechanics and significance.
	Techniques of structural analysis in areas of superposed folding.

Sr.	Name of Books/Authors
No.	
1	Principles of Structural Geology, Suupe, J., Prentice-Hall.
2	Structural Geology, Twiss, R.J. and Moores, E.M., W.H. Freeman & Co.
3	Structural Geology of rocks and regions, Davis, G.H. and Reynolds, S.J., John Wiley
	& Sons, Inc.
4	Structural Geology: Fundamental and Modern developments, Ghosh, S.K. 1993,
	Pergamon.
5	Techniques of Modern Structural Geology, Volume 3: Applications of Continuum
	Mechanics in Structural Geology (Modern Structural Geology), Ramsay, J.G., Lisle,
	R.J., Academic Press.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-602.1	3	2	3	3	2	3	2	3	3	3	3
GT-602.2	3	2	3	2	2	2	3	2	3	2	3
GT-602.3	3	2	3	2	3	2	3	3	3	2	2
GT-602.4	3	2	3	3	2	2	3	2	3	3	2
Average	3	2	3	2.5	2.25	2.25	2.75	2.5	3	2.5	2.5

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-602.1	3	2	3	3
GT-602.2	3	3	2	3
GT-602.3	3	3	2	3
GT-602.4	3	2	3	2
Average	3	2.5	2.5	2.75

METAMORPHIC PETROLOGY (GT-603)							
Lecture	Credit	Assessment	External	Internal	Total	Exam Duration	
		method	Assessment	Assessment			
4	4	Theory	100	50	150	3 hrs.	
		C	OURSE OBJ	ECTIVE			
To provi	de in-dep	oth knowledge o	of phase rule,	classification	of metar	norphic rocks and	
metamorp	hic assen	nblages.					
COURSE OUTCOMES							
1. St	udents w	ill get knowledg	e about agent	s and types of	of metamo	rphism along with	
various cl	assificatio	on schemes of me	tamorphic rock	KS.			
2. St	udents w	vill recall conce	epts of phase	rule and u	tilize in	understanding the	
recrystallization behavior of metamorphic rocks.							
3. Students will learn about phase diagrams and petrogenetic grid for metamorphic							
assemblages.							
4. St	udents wi	ll get knowledge	about mineral	assemblages a	nd chemog	graphic reactions in	

various metamorphic facies.

DETAILS OF COURSE:

Unit	Content							
1	Type of metamorphism and controlling factors, different types of metamorphic rocks,							
	textural and structural classification of metamorphic rocks.							
2	Phase rule, metamorphic reactions and phase equilibria in metamorphic rocks, graphical							
	representation of various mineral assemblages in different P-T conditions,							
	chemographic projections.							
3	Phase diagrams and petrogenetic grid for metamorphic assemblages in various grades							
	of metamorphism thermodynamics of metamorphic reactions, mineral assemblages and							
	metamorphic isograds.							
4	Mineral assemblages and chemographic relation for different parent rock types in							
	zeolite, prehnite, pumpellyite, greenschist, amphibolite, granulite, eclogite, and							
	blueschist facies and sub-facies, mineral paragenesis.							

Sr. No.	Name of Books/Authors
1	Igneous and Metamorphic Petrology, Best, M.G., Blackwell.
2	Petrogenesis of Metamorphic Rocks, Bucher, K., Grapes, R., Springer.
3	Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths, Spear, F.S.,
	Mineralogical Society of America Monograph.
4	An Introduction to Metamorphic Petrology, Yardley, B.W.D., Longman-ELBS.
5	An Introduction to Igneous and Metamorphic Petrology", Winter, J.D., Prentice-Hall.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-603.1	3	3	3	3	2	3	2	3	3	3	2
GT-603.2	3	3	3	2	3	2	3	2	3	2	3
GT-603.3	3	2	3	2	3	2	3	3	3	2	3
GT-603.4	3	2	2	3	2	3	3	2	3	3	3
Average	3	2.5	2.75	2.5	2.5	2.5	2.75	2.5	3	2.5	2.75

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-603.1	3	2	3	3
GT-603.2	3	3	2	3
GT-603.3	3	3	3	3
GT-603.4	3	3	3	2
Average	3	2.75	2.75	2.75

APPLIED GEOCHEMISTRY (GT-604)							
Lecture	Credit	Assessment	External	Internal	Total	Exam	
		method	Assessment	Assessment		Duration	
4	4	Theory	100	50	150	3 hrs.	
COURSE OBJECTIVE							
To introduce geochemistry as a tool for understanding various earth processes.							
COURSE OUTCOMES							
1. Stu	udents will	get to learn abo	out chemical comp	positions of ea	rth and basic	concepts of	
surface ch	surface chemistry.						
2. Stu	2. Students recall concepts of thermodynamics and chemical equilibrium and learn about						
their applications in geology.							
3. Stu	3. Students will learn about aqueous solutions and isotope geochemistry.						
4. Stu	Students will learn about applications of geochemistry in exploration and various fields of						

geology.

DETAILS OF COURSE:

Unit	Content							
1	Chemical composition of earth, distribution of elements in igneous, sedimentary and							
	metamorphic rocks, internal divisions and differentiation of earth. surface chemistry,							
	colloids in igneous, sedimentary and metamorphic conditions.							
2	Chemical equilibrium, equilibrium kinetics, chemical thermodynamics and its							
	applications in geology. Solution and mineral equilibria with its significance in geology.							
3	Aqueous solutions: carbonate equilibria, silicate equilibria. Sedimentation and diagnosis-							
	organic and inorganic geochemistry,, radiogenic and stable isotopes, different isotopic							
	systematics, geochronology.							
4	Analytical techniques for rock, sediments and water compositions. Geochemical							
	techniques for mineral exploration in different geological environments, geochemical							
	surveys and data analysis.							

Sr.	Name of Books/Authors				
No.					
1	Introduction to Geochemistry, Kraushopk, K.B., and Bird, D.K., McGraw-Hill.				
2	Geochemistry: An Introduction, Albarede, F., Cambridge University Press.				
3	Essentials of Geochemistry, Walther, J.V., Jones & Bartlett, Longman Pearson				
	Education.				
4	Modern Analytical Geochemistry, Gill, R., Addison Wesley, Longman Pearson				
	Education.				
5	Treatise of Geochemistry, Holland, H.D. (Ed.), Elsevier.				

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-604.1	3	2	3	3	3	3	2	3	3	3	2
GT-604.2	3	2	3	2	2	2	3	2	3	2	2
GT-604.3	3	2	3	2	3	3	3	3	3	2	2
GT-604.4	3	2	3	3	2	2	3	2	3	3	2
Average	3	2	3	2.5	2.5	2.5	2.75	2.5	3	2.5	2

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-604.1	3	2	3	3
GT-604.2	3	3	2	3
GT-604.3	3	3	2	3
GT-604.4	3	2	3	2
Average	3	2.5	2.5	2.75

	ECONOMIC AND ORE GEOLOGY (GT-605)								
Lecture	Credit	Assessment External Internal Total Exam Duration							
		method	Assessment	Assessment					
4	4	Theory	100	50	150	3 hrs.			
		С	OURSE OBJE	ECTIVE					
To impar	t basic u	inderstanding of d	lifferent types	of mineral de	posit and	processes of their			
formation	•								
	COURSE OUTCOMES								
1. St	udents wi	ll get introduced t	o economic ge	ology and learn	n about ge	eological aspects of			
ore bodies	5.								
2. St	udents w	ill learn about ore	e genesis and 1	nineralization	associated	with various rock			
types and	series.								
3. St	3. Students will learn about processes of ore formation and their classification as endogenic								
and exogenic processes.									
4. St	4. Students will get knowledge of geographical and geological distribution of important								
economic	economic deposits of India.								

Unit	Content
1	Introduction: basic terms and definitions, historical background, scope of economic
	geology, importance of mineral deposits in national economy, ore deposits and ore
	minerals: classification and structure/texture of ore minerals, morphology of ore bodies.
2	Ore genesis: physico- chemical conditions of ore formation. Fluid inclusion studies,
	mineralization associated with ultramafic, mafic and acidic rocks, greenstone belts,
	komatiites, anorthosites and kimberlites and submarine volcanism. Metamorphic and
	metamorphosed processes responsible for ore mineral genesis.
3	Endogenic processes of ore formation: early and late magnetic segregation and injection,
	immiscible liquid segregation, different types of hydrothermal ore formation, volcanic
	exhalative process, exogenic processes of ore formation, mechanical accumulation,
	sedimentary precipitates, residual concentration, oxidation and supergene enrichment.
4	Geology and distribution of important economic deposits of India: bauxite, iron,
	manganese, copper, lead, zinc, gold, chromites, diamond, coal and petroleum.
	Metallogeny and mineral belts: global distribution of minerals in time and space.

Sr. No.	Name of Books/Authors
1	Economic Mineral Deposits, Bateman, A.M. and Jensen, M.L., John Wiley & Sons.
2	The Geology of Ore Deposits, Guilbert, J.M. and Charles F.P. Jr., Waveland.
3	Ore Geology and Industrial Minerals: An Introduction", Evans, A.M., Blackwell
	Science, 3rd Ed.
4	Mineral Resources of India, Bannerjee, D.K., The World Press.
5	Ore Genesis: A Holistic Approach, Mookherjee, A., Allied Publishers.
6	Geology of Mineral Deposits, Smirnov, V.I., MIR Publishers.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-605.1	3	2	3	3	2	3	2	3	3	3	2
GT-605.2	3	2	3	2	2	2	3	2	3	2	2
GT-605.3	3	2	3	2	3	2	3	3	3	2	2
GT-605.4	3	2	3	3	2	2	3	2	3	3	2
Average	3	2	3	2.5	2.25	2.25	2.75	2.5	3	2.5	2

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-605.1	3	2	3	3
GT-605.2	3	3	2	2
GT-605.3	3	3	2	3
GT-605.4	2	2	3	2
Average	2.75	2.5	2.5	2.5

PRACTICAL (GT-606)								
	(Based on GT-601 & GT-602)							
Lecture	Credit	t Assessment External Internal Total Exam duration Method Assessment						
12	6	Practical	75	25	100	3 Hrs.		
		С	OURSE OBJE	ECTIVE				
To provide in-depth practical knowledge of stratigraphy and structural geology.								
COURSE OUTCOME								
Students g	Students get acknowledged about the practical of stratigraphy and structural geology.							

LIST OF PRACTICALS:

• Techniques of strain analysis: determination of finite strain of deformed objects using long- to short axis, center-to-centre, Fry and Rf/ Φ methods.

- Determination of finite strain from deformed fossils.
- Dip isogon method of fold analysis.
- Determination of strain in ductile shear zones and analysis of brittle fault zones.
- Structural analysis of folded terrains.
- Practical & exercises on stratigraphy.

PRACTICAL (GT-607) (Based on GT-603, GT-604 & GT-605)								
Lecture	re Credit Assessment External Internal Total Exam duration Method Assessment Assessment							
12	12 6 Practical 75 25 100 3 Hrs.					3 Hrs.		
		0	COURSE OBJE	ECTIVE				
To provid	de in-dept	h practical know	vledge of meta	morphic rocks	, geocher	nical data analysis		
technique	s and inter	pretation of mine	ral exploration of	lata.				
COURSE OUTCOME								
Students come to know about the procedure of microscopic study of thin sections and distribution								
of importa	ant minera	l deposits.						

LIST OF PRACTICALS:

- Microscopic/petrographic studies of metamorphic rocks.
- Sampling of rocks, sediments and water for geochemical analysis.
- Digestion of rock samples, preparation of solutions for analysis.
- Analysis of major and trace elements in silicate rocks.
- Preparation of standards for geochemical analysis.
- Preparation of various solutions with differing ionic strength.
- Basic principles and demonstration of analytical instruments.
- Exercises on geochemical data interpretation.
- Locating different important mineral deposits on an outline map of India.
- Megascopic study of ore specimens/industrial minerals.
- Microscopic study of important ore minerals.
- Preparation of polished ore specimen.

	REMOTE SENSING TECHNOLOGY (GT-701)										
Lecture	Credit	Assessment External Internal Total Exam Duration									
		method	method Assessment Assessment								
4	4	Theory	100	50	150	3 hrs.					
		С	OURSE OBJE	ECTIVE							
Introduce	the princ	ciples of remote se	nsing technolo	gy and its app	lication in	the field of Earth					
Sciences.											
		C	OURSE OUT	COMES							
1. St	udents wi	ll get introduced to	remote sensing	g technology an	d atmospl	neric interactions.					
2. St	udents wi	ill learn about cha	racteristics and	physical para	meters of	aerial photography					
along with	h basic co	oncepts of satellite r	emote sensing.								
3. St	3. Students will get acknowledged to satellite programs worldwide and image processing										
and enhancement techniques.											
4. St	4. Students will get to know about applications of remote sensing in various fields of										
geology.											

Unit	Content
1	Introduction: development of remote sensing technology, advantages, basic processes of remote sensing, basic elements of EM spectrum and atmospheric windows, propagation of
	radiation through the atmosphere and interaction, remote sensing platforms;
2	Aerial photographs: types of aerial photographs, their characteristics, scale, height determination and relief displacement, stereoscopes and photo-mosaics. Satellite remote sensing: Imagery vs aerial photograph, active and passive sensors, MSS, LISS, CCD and thermal scanners.
3	Major Indian satellite programs. Basics of microwave remote sensing. fundamentals of digital image processing: characteristics of remote sensing data, pre-processing, enhancements, classification. Principles of image interpretation: concept of FCC, visual and digital interpretation- interpretation keys.
4	Photo Interpretation in geology: image characteristics of geological structures and various rock types, landforms and lineaments. Remote Sensing Applications: natural hazards and disaster mitigation, natural resources management and environmental monitoring.

SUGGESTED BOOKS:

Sr.	Name of Books/Authors
No.	
1	Remote Sensing Geology, 2 nd Edition, Gupta, R. P., Springer-Verlag Berlin Heidelberg,
	New York.
2	Remote Sensing and Image Interpretation, 4th Edition, Lillesand T. M, and Keifer, R.
	W., Wiley, New York.
3	Remote Sensing-Principles and Interpretation, 3rd Edition, Sabins, FF Jr., Freeman &
	Co,New York.
4	Photogeology, Miller, V. C., and Miller, C. F., McGraw-Hill, New York.
5	Image Interpretation in Geology, 2 nd Edition, Drury, S. A., London, Allen and Unwin.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-701.1	3	3	3	3	3	3	2	3	3	3	3
GT-701.2	3	3	3	2	2	3	3	3	3	2	3
GT-701.3	3	3	3	3	3	2	3	3	3	2	3
GT-701.4	3	3	3	3	3	2	3	2	3	3	3
Average	3	3	3	2.75	2.75	2.5	2.75	2.75	3	2.5	3

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-701.1	3	3	3	3
GT-701.2	3	3	3	3
GT-701.3	3	3	2	3
GT-701.4	3	2	3	2
Average	3	2.75	2.75	2.75

MINERAL EXPLORATION (GT-702)											
Lecture	Credit	Assessment	Total	Exam Duration							
		method	Assessment	Assessment							
4	4	Theory	100	50	150	3 hrs.					
	COURSE OBJECTIVE										
To introdu	ce basic co	oncepts of mineral	l exploration ar	nd better unders	tanding o	f mineral resources.					
	COURSE OUTCOMES										
1. Stu	idents wil	l get introduced	to mineral e	xploration and	l applicat	ions of geological					
mapping i	n it.										
2. Stu	dents will	learn basic conce	pts of geologic	al and geochem	nical prosp	pecting.					
3. Stu	dents will	get to know the	role of geophy	vsical methods	and loggi	ing tools in mineral					
exploratio	n.										
4. Stu	4. Students will get acknowledged with a numerical approach to mineral exploration and										
various m	various methods of ore reserve estimation as well as application of various software in mineral										
exploratio	n.										

Unit	Content
Umt	Content
1	Introduction: basic definitions, historical development and future opportunities and
	complexities. Geological mapping in mineral exploration, overview of various stages of
	mineral exploration: activities, data and tools.
2	Basic concepts of geological prospecting: geological indicators, lithological and structural controls of mineralization, geobotanical observations. Basic concepts of geochemical prospecting: planning, Soil Sampling, biogeochemical observations analysis and
	interpretation.
3	Different techniques in mineral exploration: drilling, sampling, core logging, geological plans and sections. Overview of geophysical methods useful in mineral prospecting: airborne survey, magnetic survey, gravity method, electromagnetic method, integration of geological and geophysical data.
4	Principles of reserve estimation: density and bulk density, factors affecting reliability of reserve estimation, reserve estimation based on geometrical models (square, rectangular, triangular and polygon blocks) regular and irregular grid patterns. Remote Sensing, GIS and computer software applications in mineral exploration.

Sr. No.	Name of Books/Authors
1	Introduction to Mineral Exploration, Moon, C.J., Whateley, M.K.G. and Evans, A.M.,
	Blackwell Science, 2 nd Ed.
2	Mineral Exploration: Recent Strategies, Rajendran, S., Srinivasamoothy, K. and
	Aravindan S., New India Pub.
3	Mineral Prospecting and Exploration, T.C Bagchi, Kalyani Publication.
4	Modelling and Geochemical Exploration of Mineral Deposits, Talapatra, A.K., Capital
	Publishing.
5	Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration, Naldrett, A.J.,
	Springer-Verlag.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-702.1	3	2	3	3	2	3	2	3	3	3	2
GT-702.2	3	2	3	2	2	2	3	2	3	2	2
GT-702.3	3	2	3	2	3	2	3	3	3	2	2
GT-702.4	3	2	3	3	2	2	3	2	3	3	2
Average	3	2	3	2.5	2.25	2.25	2.75	2.5	3	2.5	2

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-702.1	3	3	3	3
GT-702.2	3	3	3	3
GT-702.3	3	3	3	3
GT-702.4	3	3	3	3
Average	3	3	3	3

]	MICROPALAEONTOLOGY AND PALYNOLOGY (GT-703)											
Lecture	Credit	Assessment	External	Internal	Total	Exam Duration						
		method	Assessment	Assessment								
4	4	Theory	100	50	150	3 hrs.						
COURSE OBJECTIVE												
To impart	basic unde	erstanding of the	e significance o	of different asp	ects of Mi	cropalaeontology and						
Palynolog	у.											
	COURSE OUTCOMES											
1. Stu	idents will	get introduced	to micropalaed	ontology and s	ampling te	echniques along with						
detailed de	escription of	of few microfoss	sils.									
2. Stu	2. Students will learn detailed descriptions of a few important inorganic shelled microfossils											
with emphasis on their ecology and life cycle.												
3. Stu	idents wil	l get acknowl	edged to org	anic shelled	microfossi	ls and the role of						
microfossi	ls in stratig	graphic correlati	ons.									

4. Students will understand the applications of microfossils in hydrocarbon exploration, paleobathymetry and stable isotope studies.

DETAILS OF COURSE:

Unit	Content										
1	Micropalaeontology, its definition and scope, surface and subsurface sampling,										
	processing of samples for preparation of mineral matter walled and organic walled										
	microfossils. Detailed morphology, geological distribution and ecology of										
	Chitinozoans, Pteropods, and Diatoms.										
2	Detailed morphology, geological distribution and ecology of Foraminifera, Ostracoda,										
	Conodonts, Radiolarians, and Silicoflagellates.										
3	Morphology of fossil spores, pollen grains, dinoflagellates and acritarchs. Use of										
	microfossils in biostratigraphy and palaeoenvironmental interpretations.										
4	Applications of microfossils and palyno fossils in hydrocarbon exploration; CAI										
	(conodont alteration index) and spore coloration index. Paleobathymetry study using										
	benthic foraminifera. Microfossils, stable isotopes and ocean-atmosphere history.										

Sr. No	Name of Books/ Authors
1.	Microfossils, Second Edition, Howard Armstrong and Martin Brasier, Blackwell Pub.
2.	Principles of Palaeoecology, Ager, D.V., McGraw Hill.
3.	Palaeoecology, Kennety, P and Ross, C.A, Longman.
4.	Aspects of Palynology, Robert H. Tschudy, Wiley-Interscience, New York.
5.	Essentials of Palynology, P K K Nair, Asia Pub. House, New York.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-703.1	3	2	3	3	2	3	2	3	3	3	2
GT-703.2	3	2	3	2	2	2	3	2	3	2	2
GT-703.3	3	2	3	2	3	2	3	3	3	2	2
GT-703.4	3	2	3	3	2	2	3	2	3	3	2
Average	3	2	3	2.5	2.25	2.25	2.75	2.5	3	2.5	2

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-703.1	3	2	3	3
GT-703.2	3	3	2	3
GT-703.3	3	3	2	3
GT-703.4	3	2	3	2
Average	3	2.5	2.5	2.75

HYDROGEOLOGY (GT-704)								
Lecture	Credit	Assessment	External	Internal	Total	Exam Duration		
		method	Assessment	Assessment				
4	4	Theory	100	50	150	3 hrs.		
		(COURSE OBJ	ECTIVE				
To provid	le underst	tanding about the	hydrogeologica	al properties of	water be	earing formations and		
chemical	parameter	rs of water.						
COURSE OUTCOMES								
1. St	udents w	ill get introduced	to basic conce	epts of hydroge	eology a	along with physical		
parameter	s of wate	r bearing formatio	ons.					
2. St	udents wi	ll learn about the	e theory of grou	undwater flow a	and math	ematical approach to		
groundwater movements.								
3. Students will understand the role of various geological methods in hydrogeological								
investigations.								
4. St	udents v	will learn phys	iochemical pr	operties of	groundwa	ater and graphical		
representa	representation of ground water quality.							

DETAILS OF COURSE:

Unit	Content
1	Water on earth: types of water, meteoric, juvenile, magmatic and sea water. Hydrological
	cycle and its components, water balance. Water-bearing properties of rocks: porosity,
	permeability, specific yield and specific retention. Vertical distribution of water, zone of
	aeration and zone of saturation, classification of rocks according to their water-bearing
	properties. Aquiters: classification of aquifers, concepts of drainage basins and
	groundwater basins. Aquifer parameters: transmissivity and storage coefficient, water
-	table and piezometric surface
2	Theory of groundwater flow: Darcy's law and its applications: determination of
	permeability in laboratory and in field, constant head permeameter, falling head
	permeameter, tracer test, problem exercise on darcy's law, permeability test and
	transmissivity.
3	Basic geologic and hydrogeologic Investigations: surface methods :remote sensing,
	electrical resistivity method and seismic refraction method and subsurface methods:
	geologic log, drilling time log, radiation log, resistivity logging, temperature logging,
	caliper logging.
4	Groundwater Quality: Physical and chemical properties of water, quality criteria for
	different uses. graphical presentation of groundwater quality data:vertical bar graph
	method, vector diagram, pattern diagram, circular diagram, trilinear diagram, water
	quality and pollution sources, isotopes and their uses, water level fluctuations.

Sr. No.	Name of Books/ Authors
1	Fundamentals of Groundwater, F.W.Schwartz and H.Zhang, Wiley India Pvt. Ltd.
2	Groundwater Hydrology, D.K.Todd, Wiley India Pvt. Ltd.
3	Physical and Chemical Hydrogeology, P.A.Domencio and F.W.Schwartz., Springer.
4	Environmental Isotopes in Hydrogeology, I.Fritz, CRC Press.
5	Geochemistry, Groundwater and Pollution, C.A.J.Appelo and D.Postma, A.A

	Balkema Publisher.
6	Groundwater Science, C.R.Fitts, Academic Press.
7	Environmental Hydrology, A.d.Ward and S.W.Trimble, CRC Press.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-704.1	3	3	3	3	2	3	2	3	3	3	3
GT-704.2	3	3	3	2	3	3	3	2	3	3	3
GT-704.3	3	3	3	3	3	2	3	3	3	3	3
GT-704.4	3	3	3	3	3	3	3	3	3	3	3
Average	3	3	3	2.75	2.75	2.75	2.75	2.75	3	3	3

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-704.1	3	3	3	3
GT-704.2	3	3	3	3
GT-704.3	3	3	3	3
GT-704.4	3	2	3	2
Average	3	2.75	3	2.75

PETROLEUM GEOLOGY (GT-705)								
Lecture	Credit	Assessment	External	Internal Total		Exam		
		method	Assessment	Assessment		Duration		
4	4	Theory	100	50	150	3 hrs.		
		CO	URSE OBJECT	ΓIVE				
To introdu	To introduce the students to basic concepts of Petroleum Geology							
COURSE OUTCOMES								
1. St	udents can	learn about the origi	in of petroleum a	along with source	e rock consid	derations.		
2. St	udents will	get acknowledged v	with reservoir roo	cks and their typ	pes.			
3. Students will understand the mechanism of hydrocarbon migration and entrapment.								
4. St	udents will	get to know futu	are prospects of	energy in the	e form of un	nconventional		
resources	of hydroca	rbons as well as a de	eep insight on In	dia's oil and ga	s potential.			

Unit	Content
1	Elements of petroleum geology: source rocks, definition of source rock, nature and type
	of source rock kerogen sediments, its composition and origin; transformation of organic
	matter, maturation, thermal cracking, diagenesis, catagenesis and metagenesis in the
	formation of source rocks. Hydrocarbon source rock evaluation: palynofacies and types
	of Dispersed Organic Matter (DOM), Thermal Alteration Index (TAI).
2	Reservoir rocks: classification and nomenclature of reservoir rocks, clastic reservoir
	rocks, carbonate reservoir rocks, unconventional, fractured and miscellaneous reservoir
	rocks. marine and non-marine reservoir rocks.
3	Hydrocarbon migration: primary and secondary migration, migration and accumulation
	of hydrocarbons, Factors affecting primary and secondary migration. Entrapment of
	hydrocarbons: mechanics of entrapment of hydrocarbons. Types of traps: structural,
	stratigraphic and combination type of traps.
4	Unconventional Resources: oil shale, shale gas, tar sands, gas hydrates. India's oil and
	gas resources: source, reservoir rock and types of trap in major oil and gas fields of India.

Sr. No	Name of Books/ Authors
1	Geology of Petroleum, 2 nd Ed. Levorsen, A.I., W.H. Freeman C. San Francisco.
2	Petroleum Geochemistry and Geology, 2 nd Edn, Hunt, J.M., W. H. Freeman, San
	Francisco.
3	Petroleum Geology, North, F.K., Unwin Hyman (Pub.), Boston, USA.
4	Elements of Petroleum Geology, Richard, C. Selley, Academic Press, London.
5	Petroleum Geology. 1983, Developments in Petroleum Science, Ser. 16, Chapman,
	R.E. Elsevier, Amsterdam.
6	Developments in Petroleum Geology, G.D.Hobson (Ed.), Applied Science Publishers,
	London.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-705.1	3	3	3	3	3	3	2	3	3	3	3
GT-705.2	3	3	3	3	3	2	3	3	3	3	3
GT-705.3	3	3	3	2	3	3	3	3	3	3	3
GT-705.4	3	3	3	3	2	3	3	2	3	3	3
Average	3	3	3	2.75	2.75	2.75	2.75	2.75	3	3	3

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-705.1	3	3	3	3
GT-705.2	3	3	3	3
GT-705.3	3	3	3	3
GT-705.4	3	2	3	3
Average	3	2.75	3	3

PRACTICAL (GT-706)								
		(Base	ed on GT-701	& GT-702)				
Lecture	LectureCreditAssessmentExternalInternalTotalExam durationMethodAssessmentAssessmentAssessmentAssessmentAssessmentAssessment							
12	6	Practical	75	25	100	3 Hrs.		
			COURSE OBJE	ECTIVE				
To provide in-depth practical knowledge of remote sensing and mineral exploration methods.								
COURSE OUTCOME								
Students g	get knowl	edge about remote	e sensing and mi	neral exploration	on method	S.		

LIST OF PRACTICALS:

- Exercises based on the studies of remote sensing images.
- Exercise on GPS data collection and Travers.
- Study of aerial photographs and photogrammetical calculations.
- Regional exploration data analysis and ore reserve estimation.
- Exercises related to trenching, pitting and drilling data.

PRACTICAL (GT-707)								
(Based on GT-703, GT-704 & GT-705)								
Lecture	LectureCreditAssessmentExternalInternalTotalExam durationMethodAssessmentAssessmentAssessmentAssessmentAssessmentAssessment							
12	6	Practical	75	25	100	3 Hrs.		
		(COURSE OBJI	ECTIVE				
To provide	e in-deptl	n practical knowl	ledge of microp	aleontology, p	alynology,	hydrogeology and		
petroleum	geology.							
COURSE OUTCOME								
Students get knowledge about practical related to micropaleontology, palynology, hydrogeology								
and petrole	eum geolo	ogy.						

LIST OF PRACTICALS:

- Exercises based on the knowledge of micropaleontology, palynology.
- Exercises based on the knowledge of hydrogeology
- Exercises based on the knowledge of petroleum geology.

FIELD TRAINING-II (GT-708)							
Credit Assessment External Internal Total Exam							
	method	Assessment	Assessment		Duration		
4	Field Training	100	50	150	-		
COURSE OBJECTIVE							
To impart unders	tanding of advanced	mapping methods a	and techniques, s	sampling in	the field using		
different tools an	different tools and instruments.						
COURSE OUTCOME							
Students get acknowledged about large scale mapping methods and techniques, sampling in the field							
using different tools and instruments.							

ENVIRONMENTAL GEOSCIENCES (GT-801)								
Lecture	Credit	it Assessment External Internal		Total	Exam Duration			
		method	Assessment	Assessment				
4	4	Theory	100	50	150	3 hrs.		
		0	COURSE OBJI	ECTIVE				
To let stu	idents be	exposed to enviro	onmental mitiga	tion and mana	gement a	nd current practices		
with exar	nples.							
COURSE OUTCOMES								
1. St	udents wi	ll get knowledge a	bout environme	ental geology an	nd land us	e planning.		
2. St	2. Students will learn about methods and importance of solid waste management.							
3. St	Students will learn about various hazards in geological perspective and their mitigation.							
4. St	udents wi	ll get acknowledg	ed with acts an	d amendments	to protect	the environment in		
India.								

Unit	Content
1	Fundamental concepts of environmental geology: environmental geoscience, its scope,
	objective, and aims; role of geosciences in our society. Land use planning: definition
	and objective of land use planning and their types, landscape aesthetics.
2	Solid Waste: causes of solid waste, their types and effects of solid waste, waste
	disposal. Solid waste management: reduce, reuse, recycle and their method of
	management.
3	Hazard: types of hazards (landslides, volcanoes, earthquakes, droughts, cyclones,
	floods), causes of hazards and their mitigations.
4	Environmental impact assessment (EIA): aims and objectives of EIA, methodology of
	EIA. Environmental legislation: air act, water act, environmental protection act, forest
	act, wildlife act and waste management rules.

Sr. No.	Name of Books/ Authors					
1.	Natural Disasters, Alexander, D., UCL Press Ltd, UniColegeLonds.					
2.	Environmental geomorphology, Coates Dr., Sate Univ of NY Binghamton.					
3.	Mitigation of Natural hazards and disasters: international perspectives, Haque, C.					
	Emdad, Springer, Dordrecht.					
4.	EA Environmental geosciences, Keller, Prentice hall, New Jersey.					

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-801.1	3	3	3	3	3	3	3	3	3	3	3
GT-801.2	3	3	3	3	2	2	3	2	3	3	3
GT-801.3	3	3	3	3	3	3	3	3	3	3	3
GT-801.4	3	3	3	3	2	3	3	2	3	3	2
Average	3	3	3	3	2.5	2.75	3	2.5	3	3	2.75

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-801.1	3	3	3	3
GT-801.2	3	3	3	3
GT-801.3	3	3	2	3
GT-801.4	3	2	3	2
Average	3	2.75	2.75	2.75

COAL GEOLOGY AND TECHNOLOGY (GT-802)								
Lecture	Credit	Assessment	External	Internal	Total	Exam Duration		
		method	Assessment	Assessment				
4	4	Theory	100	50	150	3 hrs.		
			COURSE OBJ	IECTIVE				
To familia	rize the st	udents about phy	vsical, petrolog	ical and techno	logical pro	operties of coal.		
COURSE OUTCOMES								
1. Stu	udents will	l get familiarized	with the origin	n, types and dia	genesis of	coal.		
2. Stu	2. Students will learn about building components of coal and its chemical analysis.							
3. Students will understand methane genesis in coal and its technological properties.								
4. Students will know the geographical and geological distribution of coal in India and their								
utilization	utilization.							

Unit	Content
1	Origin of coal, allochthonous and autochthonous theories, origin of peat swamps,
	climatic, paleogeography and tectonic requirements, types of coal, physical properties of
	coal, rank and grade, classification of coal, constituents of coal. Diagenesis of peat and
	coalification process, causes, role of time, temperature, physical changes associated with
	increased coal rank.
2	Lithotypes, microlithotypes and macerals and their physical, chemical and optical
	properties. Chemical characterization: proximate and ultimate analysis, trace elements in
	coal.
3	Cleats in coal. Coal bed methane (CBM): elementary idea about generation of methane
	in coal beds and coal bed methane exploration, coal as a source rock for hydrocarbon.
	Technological properties of coal: coal gasification, coal liquefaction, coal carbonisation.
4.	Application of coal geology in hydrocarbon exploration, vitrinite reflectance.
	Environmental impacts of coal mining and burning, mitigation measures to avoid or
	reduce those impacts. Gondwana and Tertiary coal deposits in India; geology of
	important coalfields of India

Sr.	Name of Books/ Authors							
No.								
1	Text book of Coal Petrology, Stach, E., Mackowsky, M.T.H., Taylor, G.H., Chandra,							
	D., Teichmuller, M., and Teichmuller, R., Gebruder Borntraeger, Stuttgart.							
2	Textbook of Coal (Indian context), Gebruder Borntraeger, Stuttgart Chandra, D.,							
	Singh, R.M. Singh, M.P. (2000)., Tara Book Agency, Varanasi.							
3	International Committee for Coal and Organic Petrology (ICCP). The new inertinite							
	classification (ICCP System 1994). Fuel 80, 459–471.							
4	International Committee for Coal and Organic Petrology, (ICCP). The new vitrinite							
	classification (ICCP System 1994). Fuel 77, 349–358.							
5	Coal and organic Petrology, Singh, M.P., Hindustan Publishing Corporation, New							
	Delhi.							
6	Applied Coal Petrology. The Role of Petrology in Coal Utilization, Suárez-Ruiz,							

I., Crelling J.C. (Eds.), Elsevier, Academic Press. USA.

PO7 PO2 PO3 PO4 PO8 COs/POs PO1 PO5 PO6 PO9 PO10 PO11 GT-802.1 3 GT-802.2 3 GT-802.3 3 GT-802.4 3 2.5 2.75 2.5 Average

Mapping of Course Outcomes to Programme Outcomes

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-802.1	3	3	3	3
GT-802.2	3	3	2	3
GT-802.3	3	3	3	3
GT-802.4	3	3	3	3
Average	3	3	2.75	3

	MINING GEOLOGY (GT-803)						
Lecture	ture Credit Assessment External Internal Total Exa					Exam Duration	
		method	Assessment	Assessment			
4	4	Theory	100	50	150	3 hrs.	
		C	OURSE OBJE	ECTIVE			
This cour	se is design	ned to give the ge	ology students	an introductory	y idea abo	out the various	
types of g	geological f	field operations, w	which are carrie	ed out in opence	ast/underg	ground mines.	
		C	OURSE OUT	COMES			
1. S ⁻	tudents are	introduced to his	torical develop	ment and princ	iples of m	nining.	
2. S ⁻	tudents wi	ll learn about i	methods, tools	, advantages	and limit	ts of surface and	
subsurfac	e mining.						
3. S ⁻	3. Students will understand the role of geological operations in mining along with a brief						
description of blasting techniques.							
4. S	tudents wil	ll learn about mi	ineral dressing	and environm	nental haz	ards of mining in	
detail.							

Unit	Content
1	Introduction: Historical development, Importance and future scopes, basic
	understanding of mining industry and processes. Principles of mining industry, mining
	policy and legislation.
2	Surface methods of mining: mechanical and aqueous extraction. Subsurface mining:
	basic infrastructures and common terms. Ocean bottom mining.
3	Geological operations in mining: preparation of mine plans, bench mapping,
	underground mine mapping, modeling of ore body, drilling, sampling, explosives &
	blasting. Mine Economic appraisals
4	Elements to mineral dressing & mineral beneficiation, mines safety measures.
	Environmental issues: nature & remedies, mine waste & their management.

Sr. No.	Name of Books/Authors
1	Mining Engineers hand books, Roberts Peele, John Wiley & Sons.
2	Mining Geology, Mckinstry, H.E, Asia publishing house.
3	Courses in mining Geology, Arogyaswami, R.P.N., Oxford IBH.
4	Elements of mining, Clark, G.B., John Wiley & Sons.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-803.1	3	3	3	3	3	3	2	3	3	3	3
GT-803.2	3	3	3	2	3	2	3	2	3	2	3
GT-803.3	3	3	3	2	3	2	3	3	3	2	3
GT-803.4	3	3	3	3	3	3	3	2	3	3	2
Average	3	3	3	2.5	3	2.5	2.75	2.5	3	2.5	2.75

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-803.1	3	3	3	3
GT-803.2	3	3	3	3
GT-803.3	3	3	3	3
GT-803.4	3	2	3	2
Average	3	2.75	3	2.75

GIS TECHNOLOGY (GT-804)							
Lecture	e Credit Assessment External Internal Total Exam D					Exam Duration	
		method	Assessment	Assessment			
4	4	Theory	100	50	150	3 hrs.	
	COURSE OBJECTIVE						
To provid	le basic une	derstanding about	GIS Technolog	gy and its applie	cation in E	Earth Sciences	
		C	DURSE OUT	COMES			
1. St	udents will	l get introduced to	GIS technolog	y and its scope	s.		
2. St	udents wil	l understand data	representation	models in GIS	and coll	aboration of remote	
sensing an	nd GIS as a	a tool in geology.					
3. St	3. Students will get to know about GIS analysis operations.						
4. St	4. Students will learn concepts of GPS and map projections along with applications of GIS						
in geoscie	ences.						

Unit	Content
1	Introduction: definition, basic concepts, historical background and future scopes of GIS
	technology. Components of GIS: hardware, software and their specifications for GIS.
2	GIS data types and models: spatial, non spatial, raster, vector, their advantage and
	disadvantages; spatial data capture and maintenance. Integration of raster-vector data
	models and integration of remote sensing with GIS, concepts of thematic layers and
	topology.
3	GIS analysis operations: overview, geometrics and measurement operations, spatial and
	non-spatial queries; neighborhood operations, spatial arrangement and connectivity
	functions. Overlays operation, display and interfaces functions, precision and accuracy,
	errors in GIS, their detection and optimization.
4	Triangulated irregular network (TIN), Digital elevation model (DEM) and their
	applications. Map production in GIS, concept of Global positioning system (GPS) and
	GIS as multidisciplinary tools and their applications in geoscience.

Sr. No.	Name of Books/Authors						
1	Introduction to Geographic Information Systems, Chang K., McGraw-Hill Education.						
2	Geographic Information Systems and Science, Paul A. Longley, Wiley Publication.						
3	Integrating GIS and the Global Positioning System, Karen Steede-Terry, ESRI						
	Publication, New York.						
4	Geographic Information Systems: An Introduction, Tor Bernhardsen, Wiley						
	Publication.						
5	Geographic Information Systems: A Management Perspective, S. Aronoff, WDL						
	Publication.						
6	Thinking About GIS: Geographic Information System Planning for Managers, Roger						
	Tomlinson, ESRI Press.						
7	GPS Satellite Surveying, 2nd Edition, A. Leick, Wiley Publication.						
8	Principles of Geographic Information System, Rolf A., ITC, Netherlands.						

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-804.1	3	3	3	3	3	3	2	3	3	3	3
GT-804.2	3	3	3	3	3	3	3	2	3	3	3
GT-804.3	3	3	3	2	3	3	3	3	3	3	3
GT-804.4	3	3	3	3	3	3	3	3	3	3	3
Average	3	3	3	2.75	3	3	2.75	2.75	3	3	3

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-804.1	3	3	3	3
GT-804.2	3	3	3	3
GT-804.3	3	3	2	3
GT-804.4	3	3	3	2
Average	3	3	2.75	2.75

ENGINEERING GEOLOGY (GT-805)							
Lecture	Credit	Assessment	External	Internal	Total	Exam	
		method	Assessment	Assessment		Duration	
4	4	Theory	100	50	150	3 hrs.	
			COURSE OBJ	ECTIVE			
To introdu	ice the stu	dents to the basi	cs of engineerin	ig geology for a	pplications in	civil engineering	
projects.							
			COURSE OUT	ICOMES			
1. Int	troduction	of students to f	fundamental cor	ncepts of engine	eering geolog	y and learning to	
apply thes	e in vario	us civil engineer	ing projects.				
2. Stu	udents wi	ll get detailed	knowledge abo	ut engineering	properties o	f rock and their	
utilization	utilization in the concept of rock mass classification.						
3. Students will understand causes, classification and analytical techniques of landslides.							
4. Stu	4. Students will learn about geological investigations useful in civil engineering projects as						
well as co	ncepts of	soil mechanics.					

Unit	Content
1	Introduction to engineering geology: basic concepts, scope. relationship of engineering
	geology with other branches of geology. Dam: terminology of dam, types of dam,
	criteria for site selection, geological considerations for dam. Tunnel: terminology of
	tunnel, types of tunnel, geological considerations for tunnel.
2	Engineering properties of rocks. Laboratory tests: uniaxial compression test, triaxial
	compression test, tensile strength test and in-situ test, Standard penetration test (SPT),
	Point load test. Concept of rock mass classification: utilities, Rock mass rating (RMR)
	classification.
3	Landslides: causes of landslides (rainfall and climatic conditions, erosion, earthquake,
	human actions) and their classifications, techniques for analysis of landslides. Physical
	characters of building and decorative stones, concrete aggregates.
4	Engineering geological investigations related to highways, buildings and bridges. Soil
	Mechanics: introduction to soils, types of soils and properties of soils. Engineering
	geological maps: types of maps and their applications.

Sr. No	Name of Books/ Authors
1	Geology & Engineering', R.F. Legget & A. Hathway, Geo Science World.
2	Principles of Engineering Geology & Geotechnics, D.P. Krynine & W. R. Judd, CBS
	Publisher.
3	Fundamentals of Engineering Geology, F.G. Bell, Elseveir.
4	Principles of Engineering Geology, P.B. Attewell & I.W. Fermer, Chapman & Hall.
5	Engineering Geology, Q. Zaruba & E. Mencl, Elsevier.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-805.1	3	3	3	3	3	3	3	3	3	3	3
GT-805.2	3	3	3	3	3	3	3	3	3	3	3
GT-805.3	3	3	3	3	3	3	3	3	3	2	3
GT-805.4	3	3	3	3	3	3	3	3	3	3	3
Average	3	3	3	3	3	3	3	3	3	2.75	3

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-805.1	3	3	3	3
GT-805.2	3	3	3	3
GT-805.3	3	3	3	3
GT-805.4	3	3	3	2
Average	3	3	3	2.75

PRACTICAL (GT-806)							
	(BASED ON GT-801 & GT-804)						
Lecture	eture Credit Assessment External Internal Total Exam duration Method Assessment Assessment						
12	6	Practical	75	25	100	3 Hrs.	
COURSE OBJECTIVE							
To provid	To provide in-depth practical knowledge of environmental geology and GIS technology in the						
light of ge	light of geological problems						
COURSE OUTCOME							
Students get knowledge about practical's of environmental geology and GIS technology in the							
light of ge	light of geological problems.						

LIST OF PRACTICALS:

- Exercises based on the studies of environmental geology.
- Practical hands on various GIS softwares.
- Exercises on use of various tools of ARCGIS.
- Exercises on GIS technology in the light of geological problems.

PRACTICAL (GT-807)							
	(Based on GT-802, GT-803 & GT-805)						
Lecture	cureCreditAssessmentExternalInternalTotalExam durationMethodAssessmentAssessmentAssessmentSeessmentSeessmentSeessmentSeessment						
12	6	Practical	75	25	100	3 Hrs.	
COURSE OBJECTIVE							
To provide in-depth practical knowledge of coal geology, mining geology and engineering							
geologica	geological problems.						
COURSE OUTCOME							
Students get acknowledged about practical's of coal geology, mining geology and engineering							
geologica	geological problems.						

LIST OF PRACTICALS:

Exercises based on the application of coal geology, and engineering geology on • geoscientific data analysis and interpretation.

- Lithological cross sections from core drilling data. •
- Numerical exercises based on engineering geology. •
- Exercises of maps and stereographic projections used in engineering geology. •

WELL LOGGING (GT-901)									
Lecture	re Credit Assessment External Internal Total Exam Duration								
		method Assessment Assessment							
4	4	Theory	100	50	150	3 hrs.			
		С	OURSE OBJE	CCTIVE					
To introdu	ce well-lo	ogging tools, meth	ods, interpretat	ion procedures	to Geolog	y students.			
COURSE OUTCOMES									
1. Stu	1. Students will be introduced to well logging and learn about various logging tools.								
2. Stu	2. Students will understand electrical logging tools and methods of operation and a brief								
introduction to log interpretation.									
3. Students will get to know about porosity logs and various types of gamma rays based									
logging.									
4. Stu	Students can understand concepts of well logging via case studies as well as learning								
temperatu	temperature logging in detail.								

Unit	Content							
1	History and introduction to well logging. Logging data acquisition. Geophysical wire-line							
	logging tools: Gamma ray tool, SP tool, Neutron tool, Gamma ray tool, Acoustic logging							
	tool.							
2	Electrical Logging: principle, type, method and tools, normal and lateral tools, induction							
	tools, focussed logging tools. Log interpretation: archie law, formation factor, water							
	saturation.							
3	Porosity Logs: principle of porosity calculations using sonic logging, gamma ray logging							
	and neutron-density logging, log characteristics, combined neutron-density log							
	characteristics.							
4	Temperature logging and its application, relation between well log signature and							
	deposition conditions, permeability estimations and cross-plots, well logging case studies.							

Sr. No.	Name of Books/ Authors										
1	The Geological Interpretation of Well Logs, Rider, M., Rider-French Consulting Ltd.										
2	Formation Evaluation, Lynch, E.J., John Cotler Books.										
3	Fundamentals of well-log interpretation, Serra, O., Elsevier.										
4	Log Interpretation Principles / Applications, Schlumberger.										
5	Handbook of Well Log Analysis, Pirsson, S.J., Prentice Hall.										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
----------	-----	-----	-----	-----	------	------	------	-----	-----	------	------
GT-901.1	3	2	3	3	2	3	2	3	3	3	2
GT-901.2	3	2	3	2	2	2	3	2	3	2	2
GT-901.3	3	2	3	2	3	2	3	3	3	2	2
GT-901.4	3	2	3	3	2	2	3	2	3	3	2
Average	3	2	3	2.5	2.25	2.25	2.75	2.5	3	2.5	2

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-901.1	3	2	3	3
GT-901.2	3	3	2	3
GT-901.3	3	3	2	3
GT-901.4	3	2	3	2
Average	3	2.5	2.5	2.75

ADVANCED STRATIGRAPHY, PALEOGEOGRAPHY AND										
PALEOECOLOGY (GT-902)										
Lecture	Lecture Credit Assessment External Internal Total Exam									
		method	Assessment	Assessment		Duration				
4	4	Theory	100	50	150	3 hrs.				
		COI	JRSE OBJECT	IVE						
To introduce the	he students wi	th applied aspe	cts of stratigrapl	hy with reconstr	uction of Pal	aeogeography				
and Palaeoecol	logy.									
		COI	JRSE OUTCO	MES						
1. Studen	ts can learn ab	out stratigraph ³	ic principles and	l different branc	hes of stratig	raphy.				
2. Studen	ts are given o	Jetailed knowle	edge about sequ	ience stratigrap	hy and assoc	ciated branches				
along with a deep insight on palaeogeographical reconstructions of India.										
3. Students will get to know about the relationship of stratigraphy with environment and ecology										
in context with	n major events	j.								
4 0, 1										

4. Students are acknowledged with complete description of Gondwana and Deccan systems along with tertiary hydrocarbon resources.

DETAILS OF COURSE:

Unit	Content									
1	Controls on development of stratigraphic records. Stratigraphic principles and nomenclature.									
	Biostratigraphy: zonations and significance. Basics of Chronostratigraphy,									
	Magnetostratigraphy, Cyclostratigraphy, Pedostratigraphy.									
2	Sequence Stratigraphy: definition, factors and controls of sequence stratigraphy. Basin analysis									
	through sequence stratigraphy. Event stratigraphy: global bio-events, extinctions and									
	radiations, global geo-events. Palaeogeography: palaeogeographic reconstructions,									
	palaeogeography of India during Gondwana duration, Paleogene and Neogene.									
3	Palaeobiogeography: concepts, recognition, factors controlling geographic distribution of									
	species. Palaeoecology: concepts of palaeoecology, application of community analysis in									
	palaeoenvironmental reconstruction, mass extinctions, glacial cycles, global climate change.									
	Temporal pattern of communities-evolutionary changes in fauna and flora with environments.									
4	Gondwana sequence of India: classification, distribution, stratigraphic succession, climatic									
	vicissitude and economic significance of Gondwana sequence of India. Deccan volcano-									
	sedimentaries, Tertiary stratigraphy of India with special emphasis on hydrocarbon resources.									

Sr. No	Name of Books/ Authors
1	Sequence stratigraphy, Emery, D. & Myers, K.J., Oxford, Blackwell Science.
2	Geology of India and Burma, Krishnan, M.S., CBS Publisher
3	Fundamentals of Historical Geology and Stratigraphy, Ravinder Kumar, CBS Publisher.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-902.1	3	3	3	3	3	3	3	3	3	3	3
GT-902.2	3	3	3	3	3	3	3	2	3	2	2
GT-902.3	3	3	3	3	3	3	3	3	3	2	3
GT-902.4	3	3	3	3	3	3	3	3	3	3	2
Average	3	3	3	3	3	3	3	2.75	3	2.5	2.75

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-902.1	3	3	3	3
GT-902.2	3	3	2	3
GT-902.3	3	3	2	3
GT-902.4	3	2	3	3
Average	3	2.75	2.5	3

ORGANIZATIONAL BEHAVIOR AND BUSINESS MANAGEMENT (GT-											
903)											
Lecture	Credit	Assessment	External	Internal	Total	Exam					
		method	Assessment	Assessment		Duration					
4	4	Theory	100	50	150	3 hrs.					
		CO	URSE OBJECT	ΓΙνε							
To introduce the students to the basic concept of organizational behaviour.											
COURSE OUTCOMES											
1. The	students are	introduced to	the organisation	al Behaviour a	nd other sin	nilar fields of					
study.											
2. Stud	dents will be	able to apply th	eories of percep	otion, learning,	leadership a	nd motivation					
in their respective geo-organizations.											
3. Students can understand about organizational structure and human resource development.											
4. Stud	4. Students will learn about the field of business, financial management and marketing										
managemen	management.										

DETAILS OF COURSE:

Unit	Content
1	Introduction to organizational behaviour: nature of organizational behaviour, O.B. and
	other similar fields of study. Psychology, sociology, anthropology, political science.
	Approaches to O.B challenges and opportunities for organizational behaviour.
2	Perception: concept of perception, perceptual process, factors influencing perception.
	Learning: concepts of learning, components of learning process, factors affecting
	learning. Leadership: meaning of leadership, leadership theory, charismatic leadership
	theory, trait theory, behavioural theory. Motivation: concept of motivation, motivation
	and behaviour, theories of motivation, Maslow's need hierarchy theory.
3	Concept and forms of organisation structure. Concept of organisational culture, creating
	and sustaining organisational culture. Nature of organisational change, factors affecting
	organisational change, resistance to Change, overcoming resistance change. Human
	resource development: meaning and concept. Personnel management: meaning, nature,
	importance and functions of personnel management.
4	Business: concept, nature and objectives. Social responsibility of business. Environment:
	meaning of environment, constituents of environment, Economic, social, political, legal
	and technological environment. management: definition, nature and significance.
	Functions of management. Planning, organising, staffing, directing and controlling.
	Financial management: objectives and functions of financial management. Marketing
	Management: nature, scope and importance of marketing management, modern
	marketing concepts. Role of marketing in economic development, meaning, nature and
	scope of international marketing.

SUGGESTED BOOKS:

Sr. No.	Name of Books/ Authors
1	Organisational Behaviour, Stephen P. Robbins, Pearson Education.
2	Organisational Behaviour, Jit S. Chandan, Vikas Publishing House Pvt. Ltd.
3	Organisational Behaviour, L.M. Prasad, Sultan Chand & Sons, New Delhi.
4	Human Relations & Organisational Behaviour, R.S. Dwivedi, Oxford, IBH.
5	Personnel Management, C.B. Mamoria, Himalayan Publications, New Delhi.
6	Business Environment, Francis Cherunilam, Himalaya Publishing House.

Mapping of Course Outcomes to Programme Outcomes

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-903.1	3	3	3	3	3	3	2	3	3	3	3
GT-903.2	3	3	3	3	2	2	3	3	3	2	3
GT-903.3	3	3	3	3	3	3	3	3	3	2	3
GT-903.4	3	3	3	3	2	2	3	3	3	3	3
Average	3	3	3	3	2.5	2.5	2.75	3	3	2.5	3

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-903.1	3	3	3	3
GT-903.2	3	3	2	3
GT-903.3	3	3	2	3
GT-903.4	3	3	3	2
Average	3	3	2.5	2.75

(GEO-HAZARDS AND DISASTER MANAGEMENT (GT-904)								
Lecture	Credit	Assessment	Assessment External Internal Total Exam Du						
		method	Assessment	Assessment					
4	4	Theory	100	50	150	3 hrs.			
		С	OURSE OBJE	CTIVE					
Students w	ill be taugh	t geological ha	zards and their	role in disaste	er mana	gement to meet the			
demands of	all the state	es in the country	y and to fill vac	ancies arising i	n each dis	strict of the country.			
		С	OURSE OUT	COMES					
1. Stuc	lents will g	get knowledge	about the basic	e principles, mi	itigation a	and management of			
natural haza	ards.								
2. Stud	2. Students will learn about mitigation and management of landslides as well as earthquakes								
along with seismic scenarios of India.									
3. Students will learn about floods and tsunami mitigation and management.									
4. Stuc	4. Students do case studies of droughts and learn basic principles of drought mitigation and								

management.

DETAILS OF COURSE

Unit	Content
1	Introduction: disasters, types, natural disasters, impact of disasters on environment, basic
	principles and elements of disaster mitigation and management.
2	Earthquakes: introduction to earthquake, causes of earthquakes, earthquake intensity
	scales, seismic activity in India, action plan for earthquakes, actions to be taken before,
	after and during earthquake. Landslides: introduction to landslide, Causes of landslides,
	types of landslide and their mitigations.
3	Floods: introduction to flood, causes of floods, flood mitigation practice, vulnerability
	analysis, risk assessment, action plan for floods, actions to be taken before, after and
	during floods. Tsunami: introduction of tsunami, causes of tsunami and their mitigations.
4	Droughts: introduction to droughts, causes of droughts, types of droughts and their
	mitigations, soil erosion and desertification.

Sr. No	Name of Books/ Authors					
1	Engineering geology, Krynine and Judd WR, McGraw-Hill Book Company, New					
	York.					
2	Rock slope engineering, Hoek and Bray, J, Spon Press; 3 edition.					
3	Applied Geomorphology, Thornbury, John Wiley and sons,. Inc., New York.					
4	EA Environmental geosciences, Keller, prentice hall, New Jersey.					
5	Natural Hazard risk assessment and public policy, Petak,WJ and Atkinson, A.D.,					
	Springer-Verlag. New York.					
6	Natural Disasters and Mitigation, Roy .P.S, Van Western C.J, Jha V.J., IIRS,					
	Dehradun.					
7	Mitigation of natural hazards and disasters: international perspectives, Haque,					
	C.Emdad, Springer, Dordrecht.					

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-904.1	3	3	3	3	3	3	3	3	3	3	3
GT-904.2	3	3	3	2	2	2	3	3	3	3	3
GT-904.3	3	3	3	2	3	2	3	3	3	3	3
GT-904.4	3	3	3	3	2	3	3	3	3	3	3
Average	3	3	3	2.5	2.5	2.5	3	3	3	3	3

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-904.1	3	2	3	3
GT-904.2	3	3	2	3
GT-904.3	3	3	3	3
GT-904.4	3	3	3	2
Average	3	2.75	2.75	2.75

GEOSCIENTIFIC INSTRUMENTATION & ANALYTICAL TECHNIQUES									
			(GT-90	5)					
Lecture	Credit	Assessment	Assessment External Internal Total Exam Duration						
		method	Assessment	Assessment					
4	4	Theory	100	50	150	3 hrs.			
		C	OURSE OBJE	ECTIVE					
This cours	se is desig	ned to give the po	ost-graduate geo	ology students a	n introdu	ctory idea about the			
various ty	pes of in	strumentation &	analytical tech	niques used to	obtain nu	umerous geological			
data.									
		C	OURSE OUT	COMES					
1. Stu	1. Students will learn about the evolution of technology and instrumentation in the field of								
Geosciences.									
2. Students will get knowledge about various sample and slide preparation as well as remote									
sensing and GIS technique.									

3. Students will learn about sedimentology techniques and various spectrometry and spectroscopy.

4. Students will learn about groundwater and engineering geology techniques.

DETAILS OF COURSE:

Unit	Content
1	Introduction: uses of analytical techniques, evolution with technological development,
	importance of sophisticated instruments and accurate analysis. Sample and sampling in
	geoscience, modal count techniques, techniques of photography in geosciences.
2	Preparation thin section and polished section making: cutting, grinding and polishing;
	powder sample preparation crushing & pulverizing. Techniques in microfossils slide
	preparation. Remote sensing and GIS techniques: aerial photograph studies, image
	interpretation and classification techniques.
3	Sedimentological techniques: sieves & sieve shaking. Sample etching & staining, heavy
	minerals & clay minerals methods, size & shape of sediments studies. Geochemistry
	techniques: flame photometer, UV spectrophotometer, (AAS) Atomic Absorption
	Spectrophotometry, ICP-Mass spectrometry, X-ray fluorescence spectrometry, Electron
	microscopy and electron-probe microanalysis, cathodoluminescence &
	thermoluminescence spectrometry.
4	Engineering geology techniques & instrumentation: in-situ and lab testing of strength of
	materials. Hydrogeological techniques & instrumentation: groundwater flow
	measurement, water quality measurement and water harvesting systems. Geophysical
	instrumentations: principles, working and data acquisition.

SUGGESTED BOOKS:

Sr. No.	Name of Books/Authors							
1	Laboratory handbook of petrographic techniques, Hutchinson, C.S. John Wiley							
2	Using geochemical data, Hugh Rollinson, Routledge.							
3	Modern geotechnical engineering, Alam Singh, IBI Publisher.							
4.	Geophysical practice in mineral exploration and mapping, T.S. Ramakrishna,							
	Geological Society of India							

Mapping of Course Outcomes to Programme Outcomes

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-905.1	3	3	3	3	3	3	2	3	3	3	3
GT-905.2	3	3	3	2	3	2	3	2	3	2	3
GT-905.3	3	3	3	2	3	2	3	3	3	2	3
GT-905.4	3	3	3	3	2	3	3	2	3	3	3
Average	3	3	3	2.5	2.75	2.5	2.75	2.5	3	2.5	3

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-905.1	3	3	3	3
GT-905.2	3	3	3	3
GT-905.3	3	2	2	2
GT-905.4	3	3	3	3
Average	3	2.75	2.75	2.75

	OCEANOGRAPHY AND MARINE GEOLOGY (GT-906)						
Lecture	Credit	Assessment	External	Internal	Total Exam		
		method	Assessment	Assessment		Duration	
4	4	Theory	100	50	150	3 hrs.	
	COURSE OBJECTIVE						
To introdu	ce concep	ts of oceanograph	ny and marine ge	eology			
		C	OURSE OUTC	COMES			
1. Stu	dents will	get introduced w	ith oceanograph	y and oceanogra	aphic setting	gs in context	
with plate	tectonics.						
2. Stu	2. Students will get knowledge about ocean circulation patterns and classification of marine						
environments.							
3. Stu	3. Students will get a deep insight on oceanic sediments along with marine geochemistry.						
4. Stu	4. Students will understand ocean based resources and international marine laws.						

DETAILS OF COURSE:

Unit	Content
1	Introduction: origin of oceans, world's oceans, geographical settings. Structural and
	oceanographic setting: plate tectonics and ocean systems, ocean morphology, marine
	stratigraphy, ocean crust, heat distribution and age of oceanic crust, structure, petrology
	and sources of oceanic crust, magnetization of the oceanic crust.
2	Ocean circulation patterns: wave dynamics, oceanic currents, surface and deep
	circulation, classification of marine environments, air-sea interaction, geologic effects of
	bottom currents, marginal marine environments.
3	Oceanic sediments and microfossils: terrigenous, biogenic and authigenic sediments,
	calcareous and siliceous microfossils, chemical sediments, carbonate and silicate
	equilibria, CCD (carbonate compensation depth), marine biogeochemistry.
4.	Paleoceanography: approaches to paleoceanographic reconstructions, various proxy
	indicators for paleoceanographic interpretation. Reconstruction of monsoon variability
	by using marine proxy records. Opening and closing of ocean gateways and their effect
	on circulation and climate during the Cenozoic. Sea level processes and Sea level
	changes.

Sr. No.	Name of Books/Authors
1	Essentials of Oceanography, Tom Garrison, Cengage Learning.
2	The Oceans, Johnson and Flemming, Sverdrup.
3	Introduction to Physical oceanography, Reddy, M.P.M, World Press.
4	Marine geology, Keen, M.J, Elsevier.
5	Climatology and Oceanography, Mamoria, Chairperson and Sisodia, M.S, SBPD
	Publication.
6	Introduction to Marine Geology and Geomorphology, King, C, Crane Russak.
7	Oceanography, Lal, D. S., Sharada Pustak Mahal.
8	Oceanography: A brief Introduction, Siddhartha, K, Kisalaya Publication Pvt. Ltd.

					1	1	1	1			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-906.1	3	3	3	3	3	3	2	3	3	3	3
GT-906.2	3	3	3	2	3	3	3	3	3	2	3
GT-906.3	3	3	3	2	3	2	3	3	3	3	3
GT-906.4	3	3	3	3	2	2	3	2	3	3	3
Average	3	3	3	2.5	2.75	2.5	2.75	2.75	3	2.75	3

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-906.1	3	3	3	3
GT-906.2	3	3	3	3
GT-906.3	3	3	2	3
GT-906.4	3	2	3	2
Average	3	2.75	2.75	2.75

	METEOROLOGY (GT-907)										
Lecture	cture Credit Assessment External Internal Total Exam Durati										
		method	Assessment	Assessment							
4	4	Theory	100	50	150	3 hrs.					
			COURSE OBJ	IECTIVE							
This cours	se is design	ned to give the p	post-graduate g	eology student	s an introc	luctory idea about the					
various br	anches of 1	meteorology.									
			COURSE OUT	FCOMES							
1. Stu	idents are	introduced to the	e basics of meter	eorology and th	ermal stru	cture of atmosphere.					
2. Stu	udents wil	l learn fundam	ental principle	es of climatol	ogy along	g with classification					
schemes.											
3. Stu	3. Students understand the role of meteorology in aviation and some basics of weather										
forecastin	forecasting.										
4. Stu	udents will	learn working p	principles of me	eteorological sa	tellites.						

DE	TAILS OF COURSE:
Unit	Content
1	Introduction: basic definitions and processes, historical development and scopes of
	meteorology. Thermal structure of the atmosphere and its composition. Radiation: basic
	laws of rayleigh and mie scattering. Vertical stability of the atmosphere: dry and moist air
	parcel.
2	Climatology: fundamental principles of climatology. Earth's radiation balance. Cloud
	formation and classification, precipitation and water balance. Air masses, monsoon, jet
	streams, tropical cyclones, and ENSO. Classification of climates: Koppen and
	Thornthwaite scheme of classification. Global climate change.
3	Aviation meteorology: Role of meteorology in aviation, weather hazards associated with
	takeoff cruising and landing, inflight, icing, turbulence, visibility, fog, clouds, rain, gusts,
	wind shear and thunderstorms, nowcasting and very short range forecasting.
4	Satellite meteorology: meteorological satellites, polar orbiting and geostationary satellites,
	visible and infrared radiometers, multiscanner radiometers. Identification of synoptic
	systems, fog and sandstorms, detection of cyclones, estimation of SST, cloud top
	temperatures, winds and rainfall, temperature and humidity soundings.

Sr. No.	Name of Books/Authors
1	Essentials of Meteorology 2nd ed, C. Ahrens, World Press.
2	Atmosphere, Weather and Climate 8th ed, R. Barry, R. Chorley, Routledge.
3	Physical Meteorology, Houghton, H.G., The MIT Press.
4	Meteorology for scientists and engineers, Roland B. Stull, Brooks-Cole.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
GT-907.1	3	3	3	3	3	3	2	3	3	3	3
GT-907.2	3	3	3	2	2	2	3	3	3	2	3
GT-907.3	3	3	3	3	3	3	3	3	3	2	3
GT-907.4	3	3	3	3	2	2	3	2	3	3	3
Average	3	3	3	2.75	2.5	2.5	2.75	2.75	3	2.5	3

COs/PSOs	PSO1	PSO2	PSO3	PSO4
GT-907.1	3	2	3	3
GT-907.2	3	3	2	3
GT-907.3	3	3	2	3
GT-907.4	3	2	3	2
Average	3	2.5	2.5	2.75

PRACTICAL (GT-908) (BASED ON GT-901, GT -902 & GT-903)										
Lecture	LectureCreditAssessmentExternalInternalTotalExam durationMethodAssessmentAssessmentAssessmentSeessmentSeessmentSeessmentSeessment									
12	6	Practical	75	25	100	3 Hrs.				
		C	OURSE OBJE	ECTIVE						
To provide in-depth knowledge of well log interpretation, stratigraphy and organization behavior.										
COURSE OUTCOME										
Students g	get knowle	dge about well lo	g interpretation.	, stratigraphy a	nd organiz	ation behavior.				

LIST OF PRACTICALS:

• Well log interpretation exercises using computer applications or manually for calculating clay volume, porosity, formation water resistivity and water saturation from a given well log.

• Exercises based on advanced stratigraphy, paleogeography & palaeoecology.

• Exercises based on organizational behavior and business management in the geosciences applications and related industries.

PRACTICAL (GT-909)										
		(Based or	n two elective	subjects opte	d)					
Lecture	LectureCreditAssessmentExternalInternalTotalExam durationMethodAssessmentAssessmentAssessmentAssessmentAssessmentAssessment									
12	6	Practical	75	25	100	3 Hrs.				
		(COURSE OBJE	CTIVE						
To provid	e in-deptł	n knowledge of pra	acticals related t	o the elective su	ıbjects.					
COURSE OUTCOME										
Students g	get knowle	edge about practic	als related to ele	ective subjects.						

LIST OF PRACTICALS:

GT-904:

- Exercises on Geo hazard management.
- Hazard zonation maps of India.

GT-905:

- Practical hands on microfossils slide preparation techniques.
- Rock thin section and slide preparation.
- Sample digestion procedures in geochemistry.
- Exercise on sedimentological techniques.
- Engineering geology instrumentation exercises.
- Exercise on Hydrogeological techniques and instrumentation.
- Practical hands on various spectrophotometry techniques.

GT-906:

- Wave Data Analysis Rose Diagrams.
- Structural features of world oceans.
- Bathymetric section of ocean.
- Exercise on distribution of economic mineral deposits in world oceans.
- Computation of Longshore currents
- Computation of relative currents.
- Beach Profiles.

GT-907:

- Analysis of temperature data.
 - (a) Vertical profiles.
 - (b) Horizontal profiles.
 - (c) Identification of Upwelling and sinking.
 - Determination of Heat budget parameters.
 - (a) Latent heat.
 - (b) Sensible heat.
 - (c) Evaporation.
- Practical exercises based on data analysis of Meteorological station.
- Computation of Atmospheric Heat Budget.

Course No.	Course Title	Total	Credits
GT-1001	Project work	150	4
GT-1002	Dissertation	150	4
GT-1003	Viva voce	150	4
	Total	450	12

M.Tech. Applied Geology (5-Year Integrated Course) 10th semester

CHOICE BASED OPEN ELECTIVE

GEOSCIENCE AND SOCIETY (GT-808) (OE- 205)										
LectureCreditAssessmentExternal AssessmentInternal AssessmentTotalExam duration										
2	2	Theory	35	15	50	3 hrs				
		(COURSE OBJ	ECTIVE						
To provide	To provide an overview of Earth Sciences including earth processes, resources and geo-hazards.									
COURSE OUTCOMES										

After completion of the course the students will get to know about the basics of geology, its related disciplines and its relation with mankind.

DETAILS OF COURSE:

Unit	Content
1	Introduction to geo-science and its various branches, Earth and its place in the solar system. origin and structure of Earth. Geological time scale. Origin and evolution of life through Earth history. Elementary idea of rocks, their types, rock cycle, minerals and gemstones. Elementary idea of various Earth processes, continental drift and plate tectonics. Orogenic and epeirogenic movements.
2	Elementary idea of geological considerations in site evaluation of engineering, construction, mining and other geological works. Environmental changes through the Earth history. Significance of earth resources to mankind and society. Hydrological cycle and water budget of an Earth.

Sr. No.	Name of Books/Authors									
1.	Understanding the earth, Press, F. and Siever, R., W.H. Freeman & Co.									
2.	Palaeontology, Jain, P.C. and Anantharaman, M.S., Vishal Publication.									
3.	An Introduction to Physical Geology, Tarbuck, Lutgens, Tasa, Eleventh Edition, Pearson Publication.									
4.	Principles of engineering Geology and Geotechnics, Krynine/Judd, Jain Book Agency.									
5.	Ground water Hydrology, Tod David K, PHI Learning.									

CHOICE BASED OPEN ELECTIVE

NATURAL HAZARDS (GT-910) (OE- 305)												
LectureCreditAssessmentExternalInternalTotalExam durationMethodAssessmentAssessmentAssessmentSeessmentSeessmentSeessmentSeessment												
2	2 2 Theory 35 15 50 3 hrs											
COURSE OBJECTIVE												
Students will be taught geological hazards and their role in disaster management to meet the demands of all the states in the country and to fill vacancies arising in each district of the country.												
COURSE OUTCOMES												

After completion of the course the students will get to know about the types and causes of natural hazards and their related consequences. The course also provides understanding about various mitigation measures that can be taken during such a hazardous situation.

DETAILS OF COURSE:

Unit	Content
1	Introduction to hazards, hazards classification and distribution, natural hazards and their effects, hazard prediction and early warning, role of community and stakeholders. Earthquakes: classification, distribution, causes and effects. Tsunami: types, effects, prediction and early warning systems.
2	Landslides: classification, distribution, causes, effects and prevention/mitigation of landslides. Volcanic hazards: types, distribution, causes and effects of volcanoes and related hazards. Floods: types and factors leading to floods, flood control/mitigation measures. Cyclones, thunderstorms and lightning, prediction and early warning, droughts and desertification.

Sr. No.	Name of Books/Author
1	Natural Disasters, Patrick Leon Abbott, Mcgraw-Hill Education.
2	Citizens Guide to Disaster Management: How To Save Your Own Life & Help Others, Laxmi Publication.
3	Disaster Management, Mukesh Kapoor, Moti Lal Banarsi Dass Publication.
4	Earthquake and Natural Disasters, Manik Kar, Moti Lal Banarsi Dass Publication.
5	Disasters Guidelines, NIDM.

Mapping Programme Outcomes with Course Outcomes (M.Tech. Applied Geology):

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO 301	3	3	3	3	2	3	2	2	3	3	2
CO 302	3	3	3	2.75	3	2.75	2.5	2.5	2.75	2.75	2.75
CO 303	3	2	2	2.5	2.25	2.25	2.75	2.5	3	2.5	2
CO 304	3	2.25	3	2.75	2.25	2.5	2.75	2.5	3	2.5	2
CO 305	3	2.25	2.75	2.5	2.75	2.25	2.75	2.5	2.75	2.25	2
CO 401	3	2.5	3	2.75	2.25	2.25	2.75	2.75	3	2.5	2.5
CO 402	3	2.5	3	2.75	2.25	2.5	2.75	2.5	2.75	2.5	2.25
CO 403	2.75	2.5	3	2.5	2.25	2.25	2.75	2.5	3	2.5	2
CO 404	3	2	3	2.5	2.5	2.5	2.75	2.5	3	2.5	3
CO 405	3	2.5	3	2.5	2.25	2.5	2.75	2.5	3	2.5	2.5
CO 501	3	2.5	3	2.5	2.75	2.5	2.75	2.5	3	2.5	2.5
CO 502	3	2	3	2.5	2.25	2.5	2.75	2.5	2.75	2.5	2.5
CO 503	3	2.25	3	2.75	2.25	2.25	2.75	2.5	3	2.5	2.75
CO 504	3	2.5	2.75	2.5	2.25	2.5	2.75	2.5	3	2.5	2.5
CO 505	3	2.5	3	2.5	2.75	2.5	2.75	2.5	3	2.5	2.25
CO 601	3	2	3	2.5	2.25	2.25	2.75	2.5	3	2.5	2.75
C0 602	3	2	3	2.5	2.25	2.25	2.75	2.5	3	2.5	2.5
CO 603	3	2.5	2.75	2.5	2.5	2.5	2.75	2.5	3	2.5	2.75
CO 604	3	2	3	2.5	2.5	2.5	2.75	2.5	3	2.5	2
CO 605	3	2	3	2.5	2.25	2.25	2.75	2.5	3	2.5	2

6

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO 701	3	3	3	2.75	2.75	2.5	2.75	2.75	3	2.5	3
CO 702	3	2	3	2.5	2.25	2.25	2.75	2.5	3	2.5	2
CO 703	3	2	3	2.5	2.25	2.25	2.75	2.5	3	2.5	2
CO 704	3	3	3	2.75	2.75	2.75	2.75	2.75	3	3	3
CO 705	3	3	3	2.75	2.75	2.75	2.75	2.75	3	3	3
CO 801	3	3	3	3	2.5	2.75	3	2.5	3	3	2.75
CO 802	3	3	3	2.5	3	3	2.75	3	3	2.5	3
CO 803	3	3	3	2.5	3	2.5	2.75	2.5	3	2.5	2.75
CO 804	3	3	3	2.75	3	3	2.75	2.75	3	3	3
CO 805	3	3	3	3	3	3	3	3	3	2.75	3
CO 901	3	2	3	2.5	2.25	2.25	2.75	2.5	3	2.5	2
CO 902	3	3	3	3	3	3	3	2.75	3	2.5	2.75
CO 903	3	3	3	3	2.5	2.5	2.75	3	3	2.5	3
CO 904	3	3	3	2.5	2.5	2.5	3	3	3	3	3
CO 905	3	3	3	2.5	2.75	2.5	2.75	2.5	3	2.5	3
CO 906	3	3	3	2.5	2.75	2.5	2.75	2.75	3	2.75	3
CO 907	3	3	3	2.75	2.5	2.5	2.75	2.75	3	2.5	3