Syllabus

Course Code: B-PHY-402    Course Name: Quantum Mechanics

MODULE NO / UNIT COURSE SYLLABUS CONTENTS OF MODULE NOTES
1 THE ORIGIN QUANTUM PHYSICS
Overview,scaleofquantumphysics,boundarybetweenclassicalandquantum phenomena:Blackbody radiation, Planck’s quantum theory; Quantum theory of light, Photon,Photoelectriceffect,Comptoneffect(theoryandresult),Frank-Hertzexperiment,deBrogliehypothesis.DavissonandGermerexperiment, wave packet, phase velocity, group velocity and their relation.Heisenberg's uncertaintyprinciple.Timeenergyandangularmomentum,positionuncertainty.Uncertaintyprinci plefromdeBrogliewave.(Wave-particleduality).GammaRay Microscope,Electrondiffractionfromaslit.
2 THE SCHRODINGERWAVEEQUATION
Time dependent Schrodinger equation and dynamical evolution of a quantum state ; properties of Wave Function, Interpretation of Wave Function, probability and probability current densities in three dimensions; Condition for physical acceptability of Wave Functions. Normalization, Linearity and Superposition Principles, Eigenvalues and Eigenfunctions, Position, Linear momentum & Energy operators; commutator of position and linear momentum operators; Expectation values of position and linear momentum; Wave Function of a free Particle; Time-independent Schrodingerwaveequation, Stationary states, Eigenfunctions,Eigenvalues andtheir significance.
3 APPLICATION OF SCHRODINGERWAVEEQUATION TO ID PROBLEMS
(i) Particleinone-dimensionalbox(solutionofSchrodingerwaveequation, Eigenfunctions,Eigenvalues,quantizationofenergy, nodes and anti nodes, zero point energy).
(ii) Onedimensionalsteppotential: E>Vo(reflectionandtransmission coefficients).
(iii) One dimensional steppotential: E (iv) Onedimensionalpotentialbarrier:E>Vo(reflectionandtransmission Coefficients).
(v) One-dimensional potential barrier, E (vi) SolutionofSchrodingerequationforharmonicoscillator: energy eigen functions and eigen values, Zero-pointenergy.
4 APPLICATION OF SCHRODINGER WAVE EQUATION TO 3D PROBLEMS
Separation of Schrodinger wave equation in Cartesian coordinates; Free particle: energy eigenfunctions and eigenvalues; Particle in a cubic potential box:normalized energy eigenfunctions and eigenvalues, non-degenerate and degenerate eigenstates; Threedimensional anisotropic and isotropic harmonic oscillator: normalized energy eigenfunctions and eigenvalues, degeneracy; Central potentials: Separation of Schrödinger equation in spherical polar coordinates, radial and angular equations.
Copyright © 2020 Kurukshetra University, Kurukshetra. All Rights Reserved.