Syllabus

Course Code: BCH-104    Course Name: Bioenergetics and Metabolism -I

MODULE NO / UNIT COURSE SYLLABUS CONTENTS OF MODULE NOTES
1 Bioenergetics: Concept of Free energy; standard Free energy; Relationship between standard free-energy change and equilibrium constant; Coupled reactions; High-energy compounds. Biological oxidation: Oxidation & reduction; Oxidation-reduction half reactions; Nernst equation, measurement of standard reduction potentials; Calculation of G from standard reduction potentials; Enzymes involved in oxidation and reduction (oxidases, dehydrogenases, hydroperoxidases and oxygenases). Introduction to Metabolism and Experimental approaches for studying metabolism.
2 Carbohydrate Metabolism:Reactions, energetics and regulation of glycolysis; Feeder pathways for glycolysis; Fate of pyruvate under aerobic and anaerobic conditions; Pasteur effect; Pyruvate dehydrogenase complex and its regulation; Reactions, regulation and amphibolic nature of TCA Cycle; Anaplerotic reactions; Glyoxalate cycle; Pentose Phosphate Pathway; Gluconeogenesis; Cori cycle; Biosynthesis of lactose and sucrose; Glycogenesis and Glycogenolysis; Control of glycogen metabolism; Maintenance of blood glucose levels.
3 Lipid Metabolism: Mobilization and hydrolysis of triacylglycerols; Fatty acid oxidation: Franz Knoop’s experiment; β-oxidation of saturated, unsaturated and odd-chain fatty acids; Peroxisomal β-oxidation; Minor pathways of fatty acid oxidation (α- and ω- oxidations); Formation and utilization of Ketone bodies; Biosynthesis of saturated fatty acids; Elongation and desaturation of fatty acids; Biosynthesis of triacylglycerols; Regulation of fatty acid metabolism; Cholesterol biosynthesis and its regulation; Biosynthesis of glycerophospholipids and sphingolipids; Breakdown of sphingolipids by lysosomal enzymes; Formation of prostaglandins, prostacyclins, thromboxanes and leukotrienes from arachidonic acid.
4 Mitochondrial Electron Transport Chain and Oxidative Phosphorylation: Mitochondrial Transport Systems; Nature, order and organization of the components of electron transport chain; electron flow from NADH and FADH2 to O2; sites of ATP production; inhibitors of electron transport chain; Coupling between oxidation and phosphorylation; Chemiosmotic hypothesis of oxidative phosphorylation; Mechanism of ATP synthesis: Structure of proton-translocating ATP synthase; Binding Change Mechanism for proton-driven ATP synthesis; Uncoupling of oxidative phosphorylation; Control of oxidative phosphorylation.
Copyright © 2020 Kurukshetra University, Kurukshetra. All Rights Reserved.